
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 8, 2022

628 | P a g e

www.ijacsa.thesai.org

A Cross Platform Contact Tracing Mobile

Application for COVID-19 Infections using

Deep Learning

Josephat Kalezhi
1

Department of Computer

Engineering

The Copperbelt University

Kitwe, Zambia

Mathews Chibuluma
2

Department of Information

Technology/Systems

The Copperbelt University

Kitwe, Zambia

Christopher Chembe
3

Department of Computer Science

ZCAS University

Lusaka, Zambia

Victoria Chama
4

Department of Computer Science

and Information Technology

Mulungushi University

Kabwe, Zambia

Francis Lungo
5

School of Social Sciences

Mulungushi University

Kabwe, Zambia

Douglas Kunda
6

Department of Computer Science

ZCAS University

Lusaka, Zambia

Abstract—The COVID-19 pandemic has remained a global

health crisis following the declaration by the World Health

Organization. As a result, a number of mechanisms to contain

the pandemic have been devised. Popular among these are

contact tracing to identify contacts and carry out tests on them in

order to minimize the spread of the coronavirus. However,

manual contact tracing is tedious and time consuming.

Therefore, contact tracing based on mobile applications have

been proposed in literature. In this paper, a cross platform

contact tracing mobile application that uses deep neural

networks to determine contacts in proximity is presented. The

application uses Bluetooth Low Energy technologies to detect

closeness to a Covid-19 positive case. The deep learning model

has been evaluated against analytic models and machine learning

models. The proposed deep learning model performed better

than analytic and traditional machine learning models during

testing.

Keywords—Contact tracing mobile application; coronavirus;

COVID-19; deep neural networks

I. INTRODUCTION

In March 2020, the coronavirus disease (COVID-19) was
declared a pandemic by the World Health Organization [1].
Since then, relentless efforts were put in place by several
nations to understand the virus and how to contain the
pandemic. One of the promising approaches is digital contact
tracing [2]. Contact tracing has been used to follow the pattern
of networks for an individual or population infected by an
infectious disease. In the past, contact tracing has been used to
combat sexually transmitted diseases, severe acute respiratory
syndrome (SARS) and other invading pathogens [3].
Traditionally, there have been various contact tracing models
including Individual-based simulation models; Pair
approximation models; Models based on branching processes;
and Phenomenological approaches [4]. These come with
various challenges such as the inability for stochastic

simulation-based models to be analysed analytically. Other
challenges are associated with contact structure itself,
backward- and forward tracing, identification of Super-
spreaders, endemic equilibrium and efforts required for contact
tracing [4]. The effectiveness of various contact tracing
mechanisms has been presented by Klinkenberg et al [5].

In recent years, digital contract tracing has been
championed to supplement the deficiencies introduced by
traditional contact tracing. For example, a mobile contact
tracing application was developed to trace and monitor Ebola
epidemic in Northern Sierra Leone and proved to be effective
[6]. Similarly, Sacks et al. developed a smartphone based
mHealth application using CommCare and business
intelligence software Tableau to assist in contact tracing of
Ebola epidemic in Guinea [7]. Swanson et al. [8] gives details
on the performance of contact tracing in Liberia during the
2014 to 2015 epidemic. Other uses of mobile phones in contact
tracing have been used in tracing the spread of Tuberculosis
(TB) [9]. Furthermore, the outbreak of COVID-19 and
subsequent declaration as pandemic has seen a proliferation of
mobile applications aimed at contact tracing to help combat
COVID-19 [10] [11]. These applications have proved effective
in tracing contacts in order to contain the pandemic [2].

In early days of COVID-19 pandemic, Singapore
developed a COVID-19 contact tracing mobile app called
“TraceTogether” [12]. This app uses Bluetooth technology to
facilitate contact tracing. The app further uses the received
signal strength indicator (RSSI) values detected from other
mobile devices for distance estimation. The detected RSSI
values are then compared against calibrated RSSI values to
determine distance between mobile devices. The app notifies
users when they are exposed to COVID-19 and are in close
contact to other users who are using the same app. It also
allows users to access their COVID-19 health status. The app
uses a BlueTrace protocol to preserve privacy. The reference

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 8, 2022

629 | P a g e

www.ijacsa.thesai.org

implementation of the BlueTrace is referred to as OpenTrace
[13]. Through the Ministry of Health, the app provides
guidelines on how to avoid getting infected. In case one tests
positive for COVID-19, the data is then shared with Ministry
of Health. The Bluetooth data is kept on the phone no longer
than 25 days. Despite being useful, the application has been
criticised for the potential in being exploited in undertaking
criminal investigations by the police.

Similarly, a National Health Service COVID-19 app was
developed in England and Wales [14]. The app gave an option
to users to enable contact tracing. It was reported that the
effectiveness of the app towards reducing infections was
dependent on the number of users. Bluetooth RSSI values were
used to estimate distance between two close devices. Several
RSSI values were taken and then used to determine the
distance. Another contact tracing app called Immuni was
developed in Italy by the Ministries of Health and
Technological Innovation in 2020 [15]. The app used
Bluetooth technology to facilitate contact tracing. The
distinguishing functionality of the app was the absence of a
centralized database to manage contact tracing. For users
willing to use the app, they would download the data to support
contact tracing in their smartphones and a decision made
locally in case the users were exposed. Privacy concerns were
also addressed in the development of the app in line with the
national laws.

A contact tracing app called “Radar Covid” was developed
in Spain in 2020 [16]. Users of the app received notifications
when they were in close contact with a COVID-19 positive
person. The app used Bluetooth low energy technology to
detect if the user is in close proximity to a positive case. The
app was voluntary and addressed the privacy and security
concerns of users. When the user test positive, the user is
presented with an anonymous code that can be entered into the
app voluntarily. This in turn facilitated the notification of other
users in case they had been in contact with a positive case.
Despite being useful the app had a vulnerability that allowed
attackers to use fake identities.

In 2020 Apple and Google joined forces to develop
application programming interfaces (APIs) to facilitate contact
tracing [17]. The technology adopted was Bluetooth owing to
its availability in virtually every mobile device. The APIs are
used to detect contacts typically within two meters for a period
exceeding 15 minutes [18]. As pointed out in [17], the APIs
have addressed privacy concerns by preventing access to user
profiles by health authorities.

Other technology-based contact tracing mechanisms to
fight COVID-19 has been employed previously. For example,
a combination of machine learning classification algorithm and
data obtained from Wi-Fi signals from users was proposed to
determine when two users sharing the same physical space can
inform exposure [19]. In [20], a framework based on IoT was
proposed for contact tracing. They incorporated symptom-
based detection ignored in other tracing models to confirm
COVID-19 cases. The work proposed by Sahraoui et al used
online social network to trace COVID-19 infections [21].

Despite the many works presented on contact tracing, there
is more to be done for digital contact tracing to be appreciated

in future. One challenging issue is privacy and protection of
user data. In this paper, we present a cross platform contact
tracing application that uses Bluetooth Low Energy Generic
Attribute Profile (GATT) framework and deep neural network
to determine and inform users of exposure to COVID-19.
GATT framework is used to mitigate the many concerns
regarding data privacy and protection. The data exchanged
between Bluetooth devices embedded with GATT framework
is encapsulated thereby authorizing only intended recipient.
The deep neural network is applied to predict the distance
between communicating devices. Using GATT framework to
encapsulate packets exchanged between devices and deep
neural network to predict distance has not been presented in
literature. Hence the proposed approach presents novelty and
contribution of this paper.

The rest of the paper is structured as follows. In Section II
we review the literature related to this work. Section III
presents the Received Signal Strength Indicator (RSSI)
obtained from Bluetooth Low Energy (BLE) devices. In
Section IV, a logarithmic distance path loss model applied in
this work is presented. A decision tree is presented in
Section V. The proposed deep neural network model that uses
the RSSI is reported in Section VI. A comparison of
performances of models is presented in Section VII.
Section VIII reports the development of a cross-platform
contact-tracing mobile application. The conclusion appears in
Section IX.

II. RELATED WORK

In order to aid with the digital contact-tracing process, a
number of mobile applications have been developed worldwide
[11]. These applications have proved effective in tracing
contacts in order to contain the pandemic [2]. However, despite
being useful a number of challenges still remain [22]. These
include security and privacy concerns by users sharing the
data, transparency, the effectiveness of the tracing application,
social and cultural issues, legal and ethical issues and many
more [23]. Megnin-Viggars et al. [24] identifies other barriers
and factors to engaging in contact tracing during an infectious
pandemic such as COVID-19. To mitigate some of the
challenges and barriers to digital contact tracing, researchers
have proposed various solutions. For instance, blockchain
technology has been proposed to preserve privacy during
contact tracing for COVID-19 pandemic to gain trust by users
[25][26][27]. According to [26], it was reported that
blockchain technology was able to detect unknown cases of
COVID-19. The application was also capable of enabling
individuals to use the mobile application to predict the
probabilities of being infected. The study paved way for the
use of blockchain technology to contain the spread of the
epidemic as well as early detection of unknown infections.

The works in [28], proposed a smart contact tracing mobile
application that uses Bluetooth Low Energy (BLE) and
machine learning techniques. The application determined
whether the user was at risk or not depending on whom they
came into contact with. An analytic proximity estimation
model based on RSSI was particularly used to determine the
distance between two devices. Five machine learning
classifiers were considered in the estimation of distance

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 8, 2022

630 | P a g e

www.ijacsa.thesai.org

between devices. These were Support Vector Machine,
Decision Tree, Naïve Bayes, Linear Discriminant Analysis and
K-Nearest Neighbors. It was reported that the Decision Tree
classifier yielded the best accuracy compared to other
classifiers.

In [29], authors presented a contact tracing application for
wearable devices that employs machine learning. The
application used BLE for distance estimation whereas machine
learning was applied to categorize the risk of possible
exposure. Additionally, an appropriate signature protocol was
used to guarantee infected user anonymity. The authors studied
four supervised-learning classifiers namely Decision Tree,
Linear Discriminant Analysis, Naïve Bayes and K-Nearest
Neighbours. It was reported that the classifiers performed well
and yielded good precision and recall values. The Decision
Tree classifier was reported to yield the best performance in
terms of precision, recall, accuracy among others.

In [30] authors proposed a BLE application that monitors
location patterns of old people indoors. The system relied on
RSSI to estimate the positions of these elderly people. To
achieve this, BLE beacons were either attached to a person’s
clothes or worn on wrists. Further the users could also place the
beacons in their pockets. The beacons were periodically
sending broadcasts. These broadcasts were detected by a
number of BLE enabled Raspberry Pi devices that were
stationed at fixed known locations. The broadcasts carried the
RSSI among others. Each Raspberry Pi then relayed the
received data to a server for additional processing. The server
ran a machine-learning classifier to determine the location of
the person. A path-loss model was used for estimation of
distance from RSSI. Further a number of classifiers were used
and these are Naïve Bayes, Random Forest, BayesNet,
Sequential Minimal Optimization and J48. In overall the
performances of classifiers were good for indoor localization.

A dependence of RSSIs on distance for iOS and Android
mobile devices was reported in [31]. According to [31], the
iOS device was used in that study, the RSSI reached an
asymptotic value (where the RSSI appears not to change)
earlier than the Android device. It was further reported that the
RSSI detected on the Android phone used decreased gradually
compared to the iOS device. In terms of temporal RSSI
variations, the Android device exhibited more variations
compared to iOS. Therefore, according to the study [31], the
dependence of RSSI on distance varies between iOS and
Android devices.

In a related work [32], an evaluation of a contact tracing
mobile application in Norway based on the Google Apple
Exposure Notification (GAEN) system was reported. The
authors observed variations in Bluetooth attenuation levels,
when alerts are generated among others between iOS and
Android mobile devices. The Android device was reported to
exhibit high variabilities compared to iOS devices. In another
related study [33], a number of data mining models have been
applied to reveal hidden patterns in patients’ data in Zambia.
The models include J48 decision classifier, Naïve Bayes,
Multilayer Perceptron among others. These models were
shown to exhibit good performance compared to baseline
results. The COVID-19 cases in Zambia are reported by the

Ministry of Health through the Zambia National Public
Institute [34]. The contact tracing process used in Zambia prior
to this work was manual and time consuming.

It is clear from the works reported above that contact-
tracing apps have found their application in mitigating the
spread of COVID-19 pandemic. In terms of distance
estimation, a number of models have been reported in the
literature. These include simplistic path loss models as well as
several machine learning models. Nevertheless, no work has
considered GATT framework to encapsulate user data in order
to mitigate the concerns regarding data privacy and protection.
Furthermore, no work has used deep neural network to predict
the distance between communicating devices. Thus, in this
paper we propose deep learning methods to estimate distance
between the devices and the GATT framework to encapsulate
the data between communicating devices in order to secure
user data. The proposed deep learning model is compared
against some models reported in the literature. The deep
learning model is further converted to models suitable for use
in a contact tracing mobile application. We further developed a
cross-platform contact-tracing app for use in Zambia that
incorporates these models.

III. RECEIVED SIGNAL STRENGTH INDICATOR

The Received Signal Strength Indicator (RSSI) is a
measure of the signal strength detected by a receiving device
[35]. The RSSI is manufacturer dependent and can vary even at
a fixed separation between the sending and receiving Bluetooth
Low Energy (BLE) devices [35]. Factors such as multipath
propagation, scattering, shadowing, refraction among others
affect BLE signals and this has implications for applications
that rely on BLE such as those for contact tracing [36]. The
RSSI can be reasonably mapped to a distance from the sending
device on iOS devices. However, the quality of RSSI on
Android devices varies significantly due to presence of several
chip manufacturers [35]. Nevertheless, a variation of this
quantity with distance from a sending device can be used as a
distance measure [35].

In this work, we relied on BLE RSSI to determine distance
between two devices. Measurements were initially taken at
several separations between two devices. It was observed that
even when the distance was fixed, the RSSI reading was
changing as reported in [35]. Measurements were taken at
several distances between two devices beginning with an initial
separation of 4 m to a final separation of 0.1 m in steps of
0.1m. At each distance, several RSSI measurements were
repeated (twenty in this case) and the mean determined. Fig. 1
shows the dependence of the mean RSSI in decibels on actual
distance separating two devices in meters. The signal
originated from an iOS device (iPhone 7 Plus) and the RSSI
was detected on an Android device (Infinix Smart HD). As can
be seen from Fig. 1, the mean RSSI follows a particular trend
despite the fluctuations as the distance between devices
changes.

Similar measurements were undertaken for signals
originating from an iOS device (iPhone 11) and detected on
another iOS device (iPhone 7 Plus). Measurements were also
undertaken for signals originating from an Android device and
detected on an iOS device (iPhone 7 Plus). It was observed that

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 8, 2022

631 | P a g e

www.ijacsa.thesai.org

RSSI values decrease in general as the distance increased in all
cases. However, variations of RSSI on distance were different
for each case. The calibration results of mean RSSI at 2m
separation for various devices has been reported for
TraceTogether contact tracing app as used in OpenTrace [13].
The results shown in Fig. 1 at a separation distance of 2 m are
in agreement with OpenTrace calibration results.

Fig. 1. Dependence of Mean RSSI in dBm on Actual Distance between Two

Devices in Metres. The Signal Originated from an iOS Device (iPhone 7 Plus)
and Detected on Android Device (Infinix Smart HD).

IV. LOGARITHMIC DISTANCE PATH LOSS MODEL

One of the simplest models relating RSSI to distance is the
logarithmic distance path loss model [37]. This model is
expressed as:

RSSI = - 10n log(d/d0)X   (1)

where n is an environment dependent path loss parameter, d
is the distance from the sending device to the receiving device,
d0 is a distance where the RSSI takes the value A. Xσ is a
random variable that follows a Gaussian-distribution. Xσ has
zero mean and a variance of σ

2
.

Taking the mean of equation (1), one obtains

RSSImean= -10n log(d/d0) Amean 

where RSSImean represents the mean RSSI. Amean is the
mean RSSI at distance d0.

According to equation (2) the distance between two devices
is then given by

d=d010
(Amean -RSSImean)/(10n)

  

A. Optimization of Logarithmic Distance Path Loss Model

In order to apply the logarithmic distance path loss model
to predict the distance between devices given the mean RSSI,
suitable values of A, d0 and n appearing in equation (3) were
needed. A model function was created in python that returned
the predicted distance given the mean RSSI, the values A, n
and d0 according to equation 3. As mentioned in Section III,
various values of RSSI for measured actual distances were
recorded. Some of these values and associated measured actual
distances served as a data set to fit the model as shown in
equation 3.

A built-in function called curve_fit in the python scipy
module was used to fit the model appearing in equation (3).

The curve_fit function uses nonlinear squares to fit the model
to the data. The inputs to the curve_fit function were the model
function as described before, the mean RSSI data, and the
corresponding measured actual distances and the parameters
d0, A and n. The curve_fit function then returned the optimized
values of n, A and d0. The optimized values where latter used
in the model to predict the distance between two devices.

V. DECISION TREE

Decision Trees are a popular supervised learning method
that can be applied in classification and regression problems
[38]. They are capable of learning decision rules from the
training dataset. These rules are usually expressed in form of
if-then statements. When used in regression the decision tree
model is piecewise smooth. According to [38], a Decision Tree
can be set to have a certain maximum depth. However, as the
depth increases, the tree rules tend to be complicated and such
a tree is prone to overfitting.

In this work a Decision Tree was trained using various
RSSI values in order to predict the distance between devices.
The scikit-learn library [38] was used to implement the
Decision Tree. The original dataset was first split into training
and test sets. The training set comprised 80% of the original
data whereas the test set comprised 20%. The training features
were the RSSI values whereas the training labels were the
actual distance between devices. A fit was then done on the
training dataset. The fit was undertaken for models with
varying maximum depth. It was observed that fitting was poor
for models with small maximum depth, typically less than 5. A
model with a maximum depth of 5 was therefore chosen. This
model was then used to make predictions on the test dataset. It
was observed that the larger the maximum depth model, the
better the model fits the training dataset. However, models with
larger maximum depths could not perform well when applied
on the test set.

VI. DEEP NEURAL NETWORK MODEL

Deep learning is a subset of machine learning that is
applied in several fields [39]. As pointed out in [39], in deep
learning an artificial neural network consisting of multiple
layers is used to model a problem. Among the layers are an
input layer, a number of hidden layers and an output layer [39].

Fig. 2. Deep Neural Network Architecture for Predicting Distance between

Two Devices.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 8, 2022

632 | P a g e

www.ijacsa.thesai.org

In this work we propose a deep neural network (DNN)
model to determine the distance between two devices using
RSSI levels. Fig. 2 shows the deep neural network architecture
for determining the distance between two devices. The input
layer comprised one artificial neuron representing the RSSI
signal which was subsequently normalized. For normalization,
two quantities were first computed from the dataset. These are
the mean and standard deviation. The normalized RSSI values
were then computed by subtracting the mean from the original
values and dividing the obtained result by the standard
deviation. Two fully connected hidden layers were used in this
study. The output layer predicted the distance between two
devices. The programming language used to implement the
model was python. The particular library used was tensorflow
[40] and keras [41] as the application programming interface.
The Rectified Linear Unit was used as the activation function.
The Adaptive Moment Estimation (Adam) optimizer was
chosen for this work. The learning rate was set to 0.01 as this
was found to be appropriate. The loss function considered was
the mean squared error. The original dataset for each platform
was split into training and test sets where the training set
comprised 80 percent of the original dataset. During training
using keras, 10% of the training data was used for validation
and the number of epochs was set to 200.

Fig. 3. Dependence of Square Root of Mean Squared Error on Epochs on

Training Set (Loss) and Cross-Validation Sets (val_loss).

Fig. 3 shows the dependence of square root of mean
squared error loss function on epochs. The loss functions on
training set (loss) and cross-validation sets (val_loss) are
shown in the Fig. 3.

The deep neural network model for each operating system
was later converted to a model to be incorporated in a mobile
application. For the iOS operating system, the model was
converted to a coreml model using coremltools [42]. For the
Android operating system, the model was converted to a
tensorflow lite model according to [43]. As reported in [35],
the RSSI is manufacturer dependent, therefore even for the
same operating system, it varies from a device from one
manufacturer to another.

VII. COMPARISON OF DEEP NEURAL NETWORK, DECISION

TREE AND LOGARITHMIC DISTANCE PATH LOSS MODELS

The accuracy of the deep neural network (DNN) model
predictions was compared with the decision tree and

logarithmic distance path loss model (LDPL). The root mean
square deviation (RMSD), computed as the square root of the
mean squared error (MSE) was used for the comparison.
Equation 4 shows how the MSE is computed.

MSE = (1/(N-1)) i (ypredicted,i – ytrue,i)
2
 

In equation 4, ypredicted represents the estimated target
values, ytrue represents the ground truth (correct) target values
and N is the number of elements in the population. The MSE
was determined using the mean_squared_error builtin function
in a python sklearn.metrics module [44].

The root mean square deviation (RMSD) was then obtained
according to equation 5.

RMSD = (MSE)
1/2
  

Fig. 4 shows the predictions of the deep neural network,
decision tree as well as logarithmic distance path loss models
for the iOS device. The maximum depth of the decision tree
was set to 5. Also plotted is the training dataset. The trained
models appear to reasonably fit the training dataset.

Fig. 4. Comparison of Actual Measured Data against Deep Neural Network

(DNN), Decision tree (DT) and Logarithmic Distance Path loss (LDPL)

Models Predictions during Training for the iOS Device.

Table I reports the RMSD computed according to equation
(5) during training and testing of models. As reported in
Table I, the DNN model performed better than the LDPL
model during training and testing. However, the DT performed
better than the DNN during training but the DNN performed
better than DT during testing. This is attributed to overfitting
by DT during training. Now, according to [28], it was reported
that the DT performed better that the simplistic distance path
loss model. This is also in agreement with the results reported
in Table I.

TABLE I. ROOT MEAN SQUARE DEVIATION (RMSD) CALCULATION FOR

TRAINING AND TESTING THE DEEP NEURAL NETWORK (DNN), DECISION

TREE (DT) AND LOGARITHMIC DISTANCE PATH LOSS (LDPL) MODELS

RMSD on training the models in m RMSD on testing the models in m

DNN DT LDPL DNN DT LDPL

0.41 0.15 0.46 0.44 0.49 0.57

The total processor (CPU) time to make model predictions
on the entire training and test datasets used in Table I was

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 8, 2022

633 | P a g e

www.ijacsa.thesai.org

compared for the three models. Table II reports the total CPU
time taken by the models in seconds.

TABLE II. TOTAL CPU TIME TAKEN TO MAKE MODEL PREDICTIONS ON

THE DATASETS USED IN TABLE I.

CPU time taken during training in

s
CPU time taken during testing in s

DNN DT LDPL DNN DT LDPL

0.091 0.00084 0.0008 0.095 0.00047 0.00098

According to Table II, the DT model took the least total
CPU time to make predictions on the test dataset compared to
LDPL and DNN models. However, as reported in Table I, the
DNN model performed better than the DT and LDPL models
in terms of predictions on the test dataset.

Owing to the fluctuation nature of the RSSI, a more
accurate model for predictions is preferred despite the tradeoff
in the CPU time taken to make predictions. As shown in
Table II, the reported CPU times are all at sub-second level.

The processing power of mobile devices is generally lower
than those of conventional desktop machines. It is worth
mentioning that the DNN models have been further optimized
to efficiently run on mobile devices as reported in [42] for iOS
devices and [43] for Android devices. The DNN model was
therefore adopted for prediction of distance between two
devices.

VIII. DEVELOPMENT OF CROSS-PLATFORM CONTACT-

TRACING MOBILE APPLICATION

In this work, a cross platform contact-tracing mobile
application was developed. The targeted operating systems
were iOS and Android. The application was developed in C#
using Xamarin, a free, open source, cross-platform for building
applications targeted at iOS and Android operating systems
among others [45].

A number of features to be incorporated in the contact-
tracing application were identified. These include the ability to
detect the presence of another person running the same
application on their device within an accepted range and
notifying the users. The capability to notify a user if they have
been exposed to a reported positive COVID-19 case in the past
fourteen days was also included. In order to achieve this, the
system used an already existing repository of COVID-19
patient data that contained unique diagnosis identifiers for
patients. Furthermore, in case the user tested positive for
COVID-19, the system was expected to provide an option to
share their diagnosis identifier. This was an important feature
that the application uses to notify others that they have come
into contact with a positive case. A self-service feature where
the user could query the application whether they have been in
contact with a positive case was also included.

In order to meet these requirements, suitable technologies
were identified. Bluetooth Low Energy (BLE) [46] was ideal
for detecting when one user was closer to another. The
Bluetooth LE Received Signal Strength Indicator (RSSI) levels
described earlier were used to determine whether users were
close to each other, within 2 metres for a period exceeding 15
minutes [18]. The deep neural network models described in

Section VI were used to predict the distance between two
users. The Global Positioning System (GPS) [47] / Cell Tower
Triangulation [48] were used to determine the location in form
of Latitude and Longitude coordinates. The location
information was used for predicting COVID-19 hotspots.

To facilitate the contact tracing process, each mobile
application user was assigned a unique random identifier that
was later securely shared with another user who is in close
proximity as determined by the deep neural network model.
The Bluetooth Low Energy Generic Attribute Profile (GATT)
framework was adopted in this case since it enables exchange
of data between two devices [49]. According to GATT, the
data is encapsulated in services where each service contains
one or more characteristics.

The mobile application had GATT client and server
capabilities. As a GATT server, the application was able to
advertise services. To distinguish a mobile device running the
contact tracing application from others, a unique service
identifier following a universally unique identifier (UUID)
format was generated for each device. Encapsulated in this
service was a characteristic whose identifier was in universally
unique identifier (UUID) format. The characteristic identifier
was unique to the application and was used for contact tracing
purposes. As a GATT client, the application was able to scan
for a unique service associated with the contact tracing
application and read the associated characteristics.

To implement the GATT capabilities in the application, a
cross platform framework named Shiny was adopted [50].
Shiny supports BLE client and hosting among several features.
This framework was also found to be convenient in that in
supports backgrounding which allows an application to
continue running even when sent to the background.

Fig. 5 is a top-level algorithm used to scan for BLE
services, characteristics, RSSI and sending device
manufacturer data among others. As shown in Fig. 5, the
mobile application keeps scanning for devices and scan results
are kept in a list. For every element of the list, the RSSI,
manufacturer data as well as whether the device is connectable
are obtained. With the obtained RSSI and sending device
manufacturer data, an appropriate deep neural network (DNN)
model is invoked to predict distance. In case the device is
connectable, a connection was made to the device to discover
offered services. The application checked for a particular
service unique for contact tracing. If this service was available,
the associated characteristics were obtained. The characteristics
are used for contact tracing.

Fig. 5. Top-Level Algorithm for Scanning for BLE Services, Characteristics

and RSSI.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 8, 2022

634 | P a g e

www.ijacsa.thesai.org

The predicted distance was used in further processing such
as alerting the user in case the devices were too close. Datetime
information was also captured in addition to Latitude/
Longitude coordinates. This information, together with the
predicted distance from RSSI, sending device manufacturer
data, characteristic UUID and contact time was stored in a
local database in the user’s mobile device.

After collecting this information, the contact tracing mobile
application then securely transmitted this information to a
central database of COVID-19 cases. An application
programming interface (API) using DotNet core WebAPI
development framework was written that allows for data to be
shared from the mobile application to the database server using
JavaScript Object Notation (JSON) as an exchange data format
and HyperText Transfer Protocol (HTTP) protocol as a
transport medium.

Fig. 6. Some Features of the Contact Tracing Mobile Application as Shown

in Android (Top Row) and iOS (Bottom Row) Operating Systems.

A feature was also available that enables a user to
determine in real-time whether they have been in contact with
a positive COVID-19 case. The stored local contact tracing
details for the last fourteen (14) days were then securely sent to
the server and a Covid-19 database queried. If one of the
contacts was recorded as a positive case in the COVID-19
database, the user was then alerted without revealing further
details. To support this feature, the COVID-19 server offered a
web service that was accessed through relational state transfer
(REST) application programming interfaces (API).

Fig. 6 illustrates some features of the contact-tracing
application. The mobile application provides real-time
exposure alerts. The application also had a manual contact
tracing feature to allow for positive diagnosed individuals to
manually input the phone numbers of the contacts they have
had met. In order to avoid abuse, a phone number verification
feature was added. The application also incorporated location
based services to get encrypted coordinates to be used in
prediction of epicentres.

Furthermore, the Latitude, Longitude and date time
information from contact-tracing applications was sent
securely to the Ministry of Health databases. This data can be
displayed in real-time in a map for identification of possible
hotspots as shown in Fig. 7.

In this section it has been shown how the GATT framework
was used to encapsulate and exchange data between Bluetooth
devices embedded with GATT framework. Furthermore, the
implementation of the deep neural network model in order to
predict distance between communicating devices has been
reported.

Fig. 7. Using Location and Datetime Information from Contact-Tracing

Applications for Identification of Hotspots.

IX. CONCLUSION

A number of digital contact tracing applications have been
applied world-over to facilitate the contact-tracing process. In
this work, a cross platform contact tracing application that uses
deep neural network models and Bluetooth Low Energy
Generic Attribute Profile framework to determine and inform
users of exposure to COVID-19 has been developed. The
performance of deep neural network models has been
evaluated against other models. The reported results show that
the deep learning model performs well during testing.

The proposed deep learning model appears to learn the
nonlinear relationship between distance and RSSI values better
compared to analytic and decision tree models. The analytic
model had four parameters according to equation 3. This
suggests that the analytic model overlooked some parameters
that are useful in determining the distance between
communicating devices. As regards to decision trees, a major
limitation is their likelihood to overfit the data on the training
set as the maximum depth increases. The smaller the maximum
depth, the less is the generalizing ability. On the other hand the
larger the maximum depth, the larger the likelihood of
overfitting on the training set resulting in less accuracy on the
test set.

The developed contact-tracing application can be beneficial
not only to COVID-19 prediction but also to other pandemics.

REFERENCES

[1] D. Cucinotta, M. Vanelli, “WHO declares COVID-19 a pandemic,” Acta
Bio Medica: Atenei Parmensis, vol 91, issue 1, pp. 157 –160, 2020

[2] S. Basu, “Effective contact tracing for COVID-19 using mobile phones:
an ethical analysis of the mandatory use of the aarogya setu application
in India,” Cambridge Quarterly of Healthcare Ethics, vol 30, issue 2, pp.
262 – 271, 2021

[3] K.T. Eames, M.J. Keeling, “Contact tracing and disease control,”
Proceedings of the Royal Society of London. Series B: Biological
Sciences, vol 270, issue 1533, pp. 2565 –2571, 2003

[4] J. Müller, M. Kretzschmar, “Contact tracing-Old models and new
challenges,” Infectious Disease Modelling, vol 6, pp. 222 –231, 2021

[5] D. Klinkenberg, C. Fraser, H. Heesterbeek, “The effectiveness of
contact tracing in emerging epidemics,” PloS one, vol 1, issue 1, p. e12,
2006

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 8, 2022

635 | P a g e

www.ijacsa.thesai.org

[6] L.O. Danquah, N. Hasham, M. MacFarlane, F.E. Conteh, F. Momoh,
A.A. Tedesco, A. Jambai, D.A. Ross, H.A. Weiss, “Use of a mobile
application for Ebola contact tracing and monitoring in northern Sierra
Leone: a proof-of-concept study,” BMC infectious diseases, vol 19,
issue 1, pp. 1 –12, 2019

[7] J.A. Sacks, E. Zehe, C. Redick, A. Bah, K. Cowger, M. Camara, A.
Diallo, A.N.I. Gigo, R.S. Dhillon, A. Liu, “Introduction of mobile health
tools to support Ebola surveillance and contact tracing in Guinea,”
Global Health: Science and Practice, vol 3, issue 4, pp. 646 – 659, 2015

[8] K.C. Swanson, C. Altare, C.S. Wesseh, T. Nyenswah, T. Ahmed, N.
Eyal, E.L. Hamblion, J. Lessler, D.H. Peters, M. Altmann, “Contact
tracing performance during the Ebola epidemic in Liberia, 2014-2015,”
PLoS neglected tropical diseases, vol 12, issue 9, p.e0006762, 2018

[9] G. Mosweunyane, T. Seipone, T.Z. Nkgau, O.J. Makhura, “ Design of a
USSD system for TB contact tracing,” In IASTED International
Conference Health Informatics (AfricaHI 2014), ACTAPRESS, 2014

[10] M. Shahroz, F. Ahmad, M.S. Younis, N. Ahmad, M.N.K. Boulos, R.
Vinuesa, J. Qadir, “COVID-19 digital contact tracing applications and
techniques: A review post initial deployments,” Transportation
Engineering, vol 5, p. 100072, 2021

[11] M. Nazayer, S. Madanian, F. Mirza, “Contact-tracing applications: a
review of technologies,” BMJ Innovations, vol 7, issue 2, pp. 368 – 378
2021

[12] TraceTogether, https://www.tracetogether.gov.sg, date accessed 03
October 2021

[13] J. Bay, J. Kek, A. Tan, C.S. Hau, L. Yongquan, J. Tan, T.A. Quy, “
BlueTrace: A privacy-preserving protocol for community-driven contact
tracing across borders,” Government Technology Agency-Singapore,
Tech. Rep, 18, 2020

[14] C. Wymant, L. Ferretti, D. Tsallis, M. Charalambides, L. Abeler-Dörner,
D. Bonsall, R. Hinch, M. Kendall, L. Milsom, M. Ayres, C. Holmes, M.
Briers, C. Fraser, “The epidemiological impact of the NHS COVID-19
App, ” preprint at go.nature.com/2m4scfk, 2021

[15] Italy: Government Implements Voluntary Contact Tracing App to Fight
COVID-19. [Web Page] Retrieved from the Library of Congress,
https://www.loc.gov/item/global-legal-monitor/2020-11-09/italy-
government-implements-voluntary-contact-tracing-app-to-fight-covid-
19/.

[16] Spain: Government's Contact Tracing App Now in Operation
Throughout Country. [Web Page] Retrieved from the Library of
Congress, https://www.loc.gov/item/global-legal-monitor/2020-11-
20/spain-governments-contact-tracing-app-now-in-operation-
throughout-country/.

[17] Privacy-Preserving Contact Tracing - Apple and Google,
https://www.apple.com/covid19/contacttracing, date accessed 03
October 2021.

[18] L. Dyani, “Contact-Tracing Apps Help to Reduce Covid Infections,”
Nature, vol 591, pp. 18 –19, 2021

[19] A. Narzullaev, Z. Muminov, M. Narzullaev, “Contact Tracing of
Infectious Diseases Using Wi-Fi Signals and Machine Learning
Classification,” In 2020 IEEE 2nd International Conference on Artificial
Intelligence in Engineering and Technology (IICAIET), pp. 1 – 5, 2020

[20] A. Roy, F.H. Kumbhar, H.S. Dhillon, N. Saxena, S.Y. Shin, S. Singh,
“Efficient monitoring and contact tracing for COVID-19: A smart IoT-
based framework,” IEEE Internet of Things Magazine, vol 3, issue 3, pp.
17 – 23, 2020

[21] Y. Sahraoui, L. De Lucia, A.M. Vegni, C.A. Kerrache, M. Amadeo, A.
Korichi, “TraceMe: Real-Time Contact Tracing and Early Prevention of
COVID-19 based on Online Social Networks,” In 2022 IEEE 19th
Annual Consumer Communications & Networking Conference (CCNC),
pp. 893 – 896, 2022

[22] K. Carteri, G. Berman, M. Garcia-Herranz, V. Sekara, “Digital contact
tracing and surveillance during COVID-19 General and Child-specific
Ethical Issues,” https://www.unicef-irc.org/publications/pdf/IRB2020-
11.pdf, date accessed 9 October 2021

[23] T. Jiang, Y. Zhang, M. Zhang, T. Yu, Y. Chen, C. Lu, J. Zhang, Z. Li, J.
Gao, S. Zhou, “A survey on contact tracing: the latest advancements and
challenges,” ACM Transactions on Spatial Algorithms and Systems
(TSAS), vol 8, issue 2, pp.1 – 35, 2022

[24] O. Megnin-Viggars, P. Carter, G.J. Melendez-Torres, D. Weston, G.J.
Rubin, “Facilitators and barriers to engagement with contact tracing
during infectious disease outbreaks: A rapid review of the evidence,”
PloS one, vol 15, issue 10, p. e0241473, 2020

[25] E. Bandara, X. Liang, P. Foytik, S. Shetty, C. Hall, D. Bowden, N.
Ranasinghe, K. De Zoysa, “A blockchain empowered and privacy
preserving digital contact tracing platform,” Information Processing &
Management, vol 58, issue 4, p.102572, 2021

[26] M. Torky, E. Goda, V. Snasel, A.E. Hassanien, “COVID-19 Contact
Tracing and Detection-Based on Blockchain Technology,” In
Informatics, vol. 8, issue 4, p. 72, Multidisciplinary Digital Publishing
Institute, 2021

[27] H. Xu, L. Zhang, O. Onireti, Y. Fang, W.J. Buchanan, M.A. Imran,
“BeepTrace: blockchain-enabled privacy-preserving contact tracing for
COVID-19 pandemic and beyond,” IEEE Internet of Things Journal, vol
8, issue 5, pp. 3915 – 3929, 2020

[28] P.C. Ng, P. Spachos, K.N. Plataniotis, “COVID-19 and your
smartphone: BLE-based smart contact tracing,” IEEE Systems Journal,
vol 15, issue 4, pp. 5367 – 5378, 2021

[29] P.C. Ng, P. Spachos, S. Gregori, K.N. Plataniotis, “Epidemic Exposure
Tracking With Wearables: A Machine Learning Approach to Contact
Tracing,” IEEE Access, vol 10, pp. 14134 –14148, 2022

[30] L. Bai, F. Ciravegna, R. Bond, M. Mulvenna, “A low cost indoor
positioning system using bluetooth low energy,” IEEE Access, vol 8, pp.
136858 – 136871, 2020

[31] J. Paek, J. Ko, H. Shin, “A measurement study of BLE iBeacon and
geometric adjustment scheme for indoor location-based mobile
applications,” Mobile Information Systems, 2016

[32] H. Meijerink, C. Mauroy, M.K. Johansen, S.M. Braaten, C.U.S. Lunde,
T.M. Arnesen, E.H. Madslien, “The first GAEN-based COVID-19
contact tracing app in Norway identifies 80% of close contacts in "real
life" scenarios, ” Frontiers in digital health, vol 3, 2021

[33] J. Kalezhi, M. Chibuluma, C. Chembe, V. Chama, F. Lungo, D. Kunda,
“Modelling Covid-19 infections in Zambia using data mining
techniques,” Results in Engineering, vol 13, p. 100363, 2022

[34] Zambia National Public Health Institute, Available: https://znphi.co.zm,
date accessed: 19 February 2021

[35] Proximity and RSSI, https://www.bluetooth.com/blog/proximity-and-
rssi/ Date accessed: 16 March 2022

[36] L. Flueratoru, V. Shubina, D. Niculescu, E.S. Lohan, “On the High
Fluctuations of Received Signal Strength Measurements with BLE
Signals for Contact Tracing and Proximity Detection,” IEEE Sensors
Journal, 2021

[37] G. Li, E. Geng, Z. Ye, Y. Xu, J. Lin, Y. Pang, “Indoor positioning
algorithm based on the improved RSSI distance model,” Sensors, vol 18,
issue 9, p. 2820, 2018

[38] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J.
Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E.
Duchesnay, “Scikit-learn: Machine learning in Python,” the Journal of
machine Learning research, vol 12, pp. 2825 –2830, 2011

[39] Y. LeCun, Y. Bengio, G. Hinton, “Deep learning, ” Nature, vol 521, pp.
436 – 444, 2015

[40] M. Abadi et al, “TensorFlow: Large-scale machine learning on
heterogeneous systems,” Software available from tensorflow.org, 2015

[41] F. Chollet et al, “Keras,” Available at: https://github.com/fchollet/keras,
2015

[42] TensorFlow 2 Conversion,
https://coremltools.readme.io/docs/tensorflow-2 Date accessed: 18
March 2022

[43] tf.lite.TFLiteConverter : TensorFlow Core v2.8.0,
https://www.tensorflow.org/api_docs/python/tf/lite/TFLiteConverter
Date accessed: 18 March 2022

[44] G. Van Rossum, F.L. Drake, “Python 3 Reference Manual,” Scotts
Valley, CA: CreateSpace, 2009

[45] Xamarin: Open-source mobile app platform for .NET ,
https://dotnet.microsoft.com/apps/xamarin, date accessed: 8 October
2021

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 8, 2022

636 | P a g e

www.ijacsa.thesai.org

[46] Bluetooth Technology Overview, https://www.bluetooth.com/learn-
about-bluetooth/tech-overview/, date accessed: 8 October 2021

[47] Satellite Navigation - Global Positioning System (GPS),
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_
units/techops/navservices/gnss/gps/, date accessed: 8 October 2021

[48] J. Yang, A. Varshavsky, H. Liu, Y. Chen, M. Gruteser, “Accuracy
characterization of cell tower localization,” In Proceedings of the 12th

ACM international conference on Ubiquitous computing 2010 Sep 26,
pp. 223 –226, 2010

[49] K. Townsend, C. Cufí, R. Davidson, “Getting started with Bluetooth low
energy: tools and techniques for low-power networking, ” O'Reilly
Media, Inc., 2014

[50] shinyorg/shiny: A Xamarin Framework for Backgrounding & Device
Hardware Services, https://github.com/shinyorg/shiny Date accessed: 18
March, 2022.

