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Abstract—The COVID-19 pandemic has remained a global 

health crisis following the declaration by the World Health 

Organization. As a result, a number of mechanisms to contain 

the pandemic have been devised. Popular among these are 

contact tracing to identify contacts and carry out tests on them in 

order to minimize the spread of the coronavirus. However, 

manual contact tracing is tedious and time consuming. 

Therefore, contact tracing based on mobile applications have 

been proposed in literature. In this paper, a cross platform 

contact tracing mobile application that uses deep neural 

networks to determine contacts in proximity is presented. The 

application uses Bluetooth Low Energy technologies to detect 

closeness to a Covid-19 positive case. The deep learning model 

has been evaluated against analytic models and machine learning 

models. The proposed deep learning model performed better 

than analytic and traditional machine learning models during 

testing. 

Keywords—Contact tracing mobile application; coronavirus; 

COVID-19; deep neural networks 

I. INTRODUCTION 

In March 2020, the coronavirus disease (COVID-19) was 
declared a pandemic by the World Health Organization [1]. 
Since then, relentless efforts were put in place by several 
nations to understand the virus and how to contain the 
pandemic. One of the promising approaches is digital contact 
tracing [2]. Contact tracing has been used to follow the pattern 
of networks for an individual or population infected by an 
infectious disease. In the past, contact tracing has been used to 
combat sexually transmitted diseases, severe acute respiratory 
syndrome (SARS) and other invading pathogens [3]. 
Traditionally, there have been various contact tracing models 
including Individual-based simulation models; Pair 
approximation models; Models based on branching processes; 
and Phenomenological approaches [4]. These come with 
various challenges such as the inability for stochastic 

simulation-based models to be analysed analytically. Other 
challenges are associated with contact structure itself, 
backward- and forward tracing, identification of Super-
spreaders, endemic equilibrium and efforts required for contact 
tracing [4]. The effectiveness of various contact tracing 
mechanisms has been presented by Klinkenberg et al [5]. 

In recent years, digital contract tracing has been 
championed to supplement the deficiencies introduced by 
traditional contact tracing. For example, a mobile contact 
tracing application was developed to trace and monitor Ebola 
epidemic in Northern Sierra Leone and proved to be effective 
[6]. Similarly, Sacks et al. developed a smartphone based 
mHealth application using CommCare and business 
intelligence software Tableau to assist in contact tracing of 
Ebola epidemic in Guinea [7]. Swanson et al. [8] gives details 
on the performance of contact tracing in Liberia during the 
2014 to 2015 epidemic. Other uses of mobile phones in contact 
tracing have been used in tracing the spread of Tuberculosis 
(TB) [9]. Furthermore, the outbreak of COVID-19 and 
subsequent declaration as pandemic has seen a proliferation of 
mobile applications aimed at contact tracing to help combat 
COVID-19 [10] [11]. These applications have proved effective 
in tracing contacts in order to contain the pandemic [2]. 

In early days of COVID-19 pandemic, Singapore 
developed a COVID-19 contact tracing mobile app called 
“TraceTogether” [12]. This app uses Bluetooth technology to 
facilitate contact tracing. The app further uses the received 
signal strength indicator (RSSI) values detected from other 
mobile devices for distance estimation. The detected RSSI 
values are then compared against calibrated RSSI values to 
determine distance between mobile devices. The app notifies 
users when they are exposed to COVID-19 and are in close 
contact to other users who are using the same app. It also 
allows users to access their COVID-19 health status. The app 
uses a BlueTrace protocol to preserve privacy. The reference 
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implementation of the BlueTrace is referred to as OpenTrace 
[13]. Through the Ministry of Health, the app provides 
guidelines on how to avoid getting infected. In case one tests 
positive for COVID-19, the data is then shared with Ministry 
of Health. The Bluetooth data is kept on the phone no longer 
than 25 days. Despite being useful, the application has been 
criticised for the potential in being exploited in undertaking 
criminal investigations by the police. 

Similarly, a National Health Service COVID-19 app was 
developed in England and Wales [14]. The app gave an option 
to users to enable contact tracing. It was reported that the 
effectiveness of the app towards reducing infections was 
dependent on the number of users. Bluetooth RSSI values were 
used to estimate distance between two close devices. Several 
RSSI values were taken and then used to determine the 
distance. Another contact tracing app called Immuni was 
developed in Italy by the Ministries of Health and 
Technological Innovation in 2020 [15]. The app used 
Bluetooth technology to facilitate contact tracing. The 
distinguishing functionality of the app was the absence of a 
centralized database to manage contact tracing. For users 
willing to use the app, they would download the data to support 
contact tracing in their smartphones and a decision made 
locally in case the users were exposed. Privacy concerns were 
also addressed in the development of the app in line with the 
national laws. 

A contact tracing app called “Radar Covid” was developed 
in Spain in 2020 [16]. Users of the app received notifications 
when they were in close contact with a COVID-19 positive 
person. The app used Bluetooth low energy technology to 
detect if the user is in close proximity to a positive case. The 
app was voluntary and addressed the privacy and security 
concerns of users. When the user test positive, the user is 
presented with an anonymous code that can be entered into the 
app voluntarily. This in turn facilitated the notification of other 
users in case they had been in contact with a positive case. 
Despite being useful the app had a vulnerability that allowed 
attackers to use fake identities. 

In 2020 Apple and Google joined forces to develop 
application programming interfaces (APIs) to facilitate contact 
tracing [17]. The technology adopted was Bluetooth owing to 
its availability in virtually every mobile device. The APIs are 
used to detect contacts typically within two meters for a period 
exceeding 15 minutes [18]. As pointed out in [17], the APIs 
have addressed privacy concerns by preventing access to user 
profiles by health authorities. 

Other technology-based contact tracing mechanisms to 
fight COVID-19 has been employed previously. For example, 
a combination of machine learning classification algorithm and 
data obtained from Wi-Fi signals from users was proposed to 
determine when two users sharing the same physical space can 
inform exposure [19]. In [20], a framework based on IoT was 
proposed for contact tracing. They incorporated symptom-
based detection ignored in other tracing models to confirm 
COVID-19 cases. The work proposed by Sahraoui et al used 
online social network to trace COVID-19 infections [21]. 

Despite the many works presented on contact tracing, there 
is more to be done for digital contact tracing to be appreciated 

in future. One challenging issue is privacy and protection of 
user data. In this paper, we present a cross platform contact 
tracing application that uses Bluetooth Low Energy Generic 
Attribute Profile (GATT) framework and deep neural network 
to determine and inform users of exposure to COVID-19. 
GATT framework is used to mitigate the many concerns 
regarding data privacy and protection. The data exchanged 
between Bluetooth devices embedded with GATT framework 
is encapsulated thereby authorizing only intended recipient. 
The deep neural network is applied to predict the distance 
between communicating devices. Using GATT framework to 
encapsulate packets exchanged between devices and deep 
neural network to predict distance has not been presented in 
literature. Hence the proposed approach presents novelty and 
contribution of this paper. 

The rest of the paper is structured as follows.  In Section II 
we review the literature related to this work. Section III 
presents the Received Signal Strength Indicator (RSSI) 
obtained from Bluetooth Low Energy (BLE) devices. In 
Section IV, a logarithmic distance path loss model applied in 
this work is presented. A decision tree is presented in 
Section V. The proposed deep neural network model that uses 
the RSSI is reported in Section VI.  A comparison of 
performances of models is presented in Section VII. 
Section VIII reports the development of a cross-platform 
contact-tracing mobile application. The conclusion appears in 
Section IX. 

II. RELATED WORK 

In order to aid with the digital contact-tracing process, a 
number of mobile applications have been developed worldwide 
[11]. These applications have proved effective in tracing 
contacts in order to contain the pandemic [2]. However, despite 
being useful a number of challenges still remain [22].  These 
include security and privacy concerns by users sharing the 
data, transparency, the effectiveness of the tracing application, 
social and cultural issues, legal and ethical issues and many 
more [23]. Megnin-Viggars et al. [24] identifies other barriers 
and factors to engaging in contact tracing during an infectious 
pandemic such as COVID-19. To mitigate some of the 
challenges and barriers to digital contact tracing, researchers 
have proposed various solutions. For instance, blockchain 
technology has been proposed to preserve privacy during 
contact tracing for COVID-19 pandemic to gain trust by users 
[25][26][27]. According to [26], it was reported that 
blockchain technology was able to detect unknown cases of 
COVID-19. The application was also capable of enabling 
individuals to use the mobile application to predict the 
probabilities of being infected. The study paved way for the 
use of blockchain technology to contain the spread of the 
epidemic as well as early detection of unknown infections. 

The works in [28], proposed a smart contact tracing mobile 
application that uses Bluetooth Low Energy (BLE) and 
machine learning techniques. The application determined 
whether the user was at risk or not depending on whom they 
came into contact with. An analytic proximity estimation 
model based on RSSI was particularly used to determine the 
distance between two devices. Five machine learning 
classifiers were considered in the estimation of distance 
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between devices. These were Support Vector Machine, 
Decision Tree, Naïve Bayes, Linear Discriminant Analysis and 
K-Nearest Neighbors. It was reported that the Decision Tree 
classifier yielded the best accuracy compared to other 
classifiers. 

In [29], authors presented a contact tracing application for 
wearable devices that employs machine learning. The 
application used BLE for distance estimation whereas machine 
learning was applied to categorize the risk of possible 
exposure. Additionally, an appropriate signature protocol was 
used to guarantee infected user anonymity. The authors studied 
four supervised-learning classifiers namely Decision Tree, 
Linear Discriminant Analysis, Naïve Bayes and K-Nearest 
Neighbours. It was reported that the classifiers performed well 
and yielded good precision and recall values. The Decision 
Tree classifier was reported to yield the best performance in 
terms of precision, recall, accuracy among others. 

In [30] authors proposed a BLE application that monitors 
location patterns of old people indoors. The system relied on 
RSSI to estimate the positions of these elderly people. To 
achieve this, BLE beacons were either attached to a person’s 
clothes or worn on wrists. Further the users could also place the 
beacons in their pockets. The beacons were periodically 
sending broadcasts. These broadcasts were detected by a 
number of BLE enabled Raspberry Pi devices that were 
stationed at fixed known locations. The broadcasts carried the 
RSSI among others. Each Raspberry Pi then relayed the 
received data to a server for additional processing. The server 
ran a machine-learning classifier to determine the location of 
the person. A path-loss model was used for estimation of 
distance from RSSI. Further a number of classifiers were used 
and these are Naïve Bayes, Random Forest, BayesNet, 
Sequential Minimal Optimization and J48. In overall the 
performances of classifiers were good for indoor localization. 

A dependence of RSSIs on distance for iOS and Android 
mobile devices was reported in [31]. According to [31], the 
iOS device was used in that study, the RSSI reached an 
asymptotic value (where the RSSI appears not to change) 
earlier than the Android device. It was further reported that the 
RSSI detected on the Android phone used decreased gradually 
compared to the iOS device. In terms of temporal RSSI 
variations, the Android device exhibited more variations 
compared to iOS. Therefore, according to the study [31], the 
dependence of RSSI on distance varies between iOS and 
Android devices. 

In a related work [32], an evaluation of a contact tracing 
mobile application in Norway based on the Google Apple 
Exposure Notification (GAEN) system was reported.  The 
authors observed variations in Bluetooth attenuation levels, 
when alerts are generated among others between iOS and 
Android mobile devices. The Android device was reported to 
exhibit high variabilities compared to iOS devices. In another 
related study [33], a number of data mining models have been 
applied to reveal hidden patterns in patients’ data in Zambia. 
The models include J48 decision classifier, Naïve Bayes, 
Multilayer Perceptron among others. These models were 
shown to exhibit good performance compared to baseline 
results. The COVID-19 cases in Zambia are reported by the 

Ministry of Health through the Zambia National Public 
Institute [34]. The contact tracing process used in Zambia prior 
to this work was manual and time consuming. 

It is clear from the works reported above that contact-
tracing apps have found their application in mitigating the 
spread of COVID-19 pandemic. In terms of distance 
estimation, a number of models have been reported in the 
literature. These include simplistic path loss models as well as 
several machine learning models. Nevertheless, no work has 
considered GATT framework to encapsulate user data in order 
to mitigate the concerns regarding data privacy and protection. 
Furthermore, no work has used deep neural network to predict 
the distance between communicating devices.  Thus, in this 
paper we propose deep learning methods to estimate distance 
between the devices and the GATT framework to encapsulate 
the data between communicating devices in order to secure 
user data. The proposed deep learning model is compared 
against some models reported in the literature. The deep 
learning model is further converted to models suitable for use 
in a contact tracing mobile application. We further developed a 
cross-platform contact-tracing app for use in Zambia that 
incorporates these models. 

III. RECEIVED SIGNAL STRENGTH INDICATOR 

The Received Signal Strength Indicator (RSSI) is a 
measure of the signal strength detected by a receiving device 
[35]. The RSSI is manufacturer dependent and can vary even at 
a fixed separation between the sending and receiving Bluetooth 
Low Energy (BLE) devices [35]. Factors such as multipath 
propagation, scattering, shadowing, refraction among others 
affect BLE signals and this has implications for applications 
that rely on BLE such as those for contact tracing [36]. The 
RSSI can be reasonably mapped to a distance from the sending 
device on iOS devices. However, the quality of RSSI on 
Android devices varies significantly due to presence of several 
chip manufacturers [35]. Nevertheless, a variation of this 
quantity with distance from a sending device can be used as a 
distance measure [35]. 

In this work, we relied on BLE RSSI to determine distance 
between two devices. Measurements were initially taken at 
several separations between two devices. It was observed that 
even when the distance was fixed, the RSSI reading was 
changing as reported in [35]. Measurements were taken at 
several distances between two devices beginning with an initial 
separation of 4 m to a final separation of 0.1 m in steps of 
0.1m. At each distance, several RSSI measurements were 
repeated (twenty in this case) and the mean determined. Fig. 1 
shows the dependence of the mean RSSI in decibels on actual 
distance separating two devices in meters. The signal 
originated from an iOS device (iPhone 7 Plus) and the RSSI 
was detected on an Android device (Infinix Smart HD). As can 
be seen from Fig. 1, the mean RSSI follows a particular trend 
despite the fluctuations as the distance between devices 
changes. 

Similar measurements were undertaken for signals 
originating from an iOS device (iPhone 11) and detected on 
another iOS device (iPhone 7 Plus). Measurements were also 
undertaken for signals originating from an Android device and 
detected on an iOS device (iPhone 7 Plus). It was observed that 
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RSSI values decrease in general as the distance increased in all 
cases. However, variations of RSSI on distance were different 
for each case. The calibration results of mean RSSI at 2m 
separation for various devices has been reported for 
TraceTogether contact tracing app as used in OpenTrace [13]. 
The results shown in Fig. 1 at a separation distance of 2 m are 
in agreement with OpenTrace calibration results. 

 
Fig. 1. Dependence of Mean RSSI in dBm on Actual Distance between Two 

Devices in Metres. The Signal Originated from an iOS Device (iPhone 7 Plus) 
and Detected on Android Device (Infinix Smart HD). 

IV. LOGARITHMIC DISTANCE PATH LOSS MODEL 

One of the simplest models relating RSSI to distance is the 
logarithmic distance path loss model [37]. This model is 
expressed as: 

RSSI = - 10n log(d/d0)X   (1)

where n is an environment dependent path loss parameter, d 
is the distance from the sending device to the receiving device, 
d0 is a distance where the RSSI takes the value A. Xσ is a 
random variable that follows a Gaussian-distribution. Xσ has 
zero mean and a variance of σ

2
. 

Taking the mean of equation (1), one obtains 

RSSImean= -10n log(d/d0) Amean 

where RSSImean represents the mean RSSI. Amean is the 
mean RSSI at distance d0. 

According to equation (2) the distance between two devices 
is then given by 

d=d010
(Amean -RSSImean)/(10n)

  

A. Optimization of Logarithmic Distance Path Loss Model 

In order to apply the logarithmic distance path loss model 
to predict the distance between devices given the mean RSSI, 
suitable values of A, d0 and n appearing in equation (3) were 
needed. A model function was created in python that returned 
the predicted distance given the mean RSSI, the values A, n 
and d0 according to equation 3. As mentioned in Section III, 
various values of RSSI for measured actual distances were 
recorded. Some of these values and associated measured actual 
distances served as a data set to fit the model as shown in 
equation 3. 

A built-in function called curve_fit in the python scipy 
module was used to fit the model appearing in equation (3). 

The curve_fit function uses nonlinear squares to fit the model 
to the data. The inputs to the curve_fit function were the model 
function as described before, the mean RSSI data, and the 
corresponding measured actual distances and the parameters 
d0, A and n. The curve_fit function then returned the optimized 
values of n, A and d0. The optimized values where latter used 
in the model to predict the distance between two devices. 

V. DECISION TREE 

Decision Trees are a popular supervised learning method 
that can be applied in classification and regression problems 
[38]. They are capable of learning decision rules from the 
training dataset. These rules are usually expressed in form of 
if-then statements. When used in regression the decision tree 
model is piecewise smooth. According to [38], a Decision Tree 
can be set to have a certain maximum depth. However, as the 
depth increases, the tree rules tend to be complicated and such 
a tree is prone to overfitting. 

In this work a Decision Tree was trained using various 
RSSI values in order to predict the distance between devices. 
The scikit-learn library [38] was used to implement the 
Decision Tree. The original dataset was first split into training 
and test sets. The training set comprised 80% of the original 
data whereas the test set comprised 20%. The training features 
were the RSSI values whereas the training labels were the 
actual distance between devices. A fit was then done on the 
training dataset. The fit was undertaken for models with 
varying maximum depth. It was observed that fitting was poor 
for models with small maximum depth, typically less than 5. A 
model with a maximum depth of 5 was therefore chosen. This 
model was then used to make predictions on the test dataset.  It 
was observed that the larger the maximum depth model, the 
better the model fits the training dataset. However, models with 
larger maximum depths could not perform well when applied 
on the test set. 

VI. DEEP NEURAL NETWORK MODEL 

Deep learning is a subset of machine learning that is 
applied in several fields [39]. As pointed out in [39], in deep 
learning an artificial neural network consisting of multiple 
layers is used to model a problem. Among the layers are an 
input layer, a number of hidden layers and an output layer [39]. 

 
Fig. 2. Deep Neural Network Architecture for Predicting Distance between 

Two Devices. 
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In this work we propose a deep neural network (DNN) 
model to determine the distance between two devices using 
RSSI levels. Fig. 2 shows the deep neural network architecture 
for determining the distance between two devices. The input 
layer comprised one artificial neuron representing the RSSI 
signal which was subsequently normalized. For normalization, 
two quantities were first computed from the dataset. These are 
the mean and standard deviation. The normalized RSSI values 
were then computed by subtracting the mean from the original 
values and dividing the obtained result by the standard 
deviation. Two fully connected hidden layers were used in this 
study. The output layer predicted the distance between two 
devices. The programming language used to implement the 
model was python. The particular library used was tensorflow 
[40] and keras [41] as the application programming interface. 
The Rectified Linear Unit was used as the activation function. 
The Adaptive Moment Estimation (Adam) optimizer was 
chosen for this work. The learning rate was set to 0.01 as this 
was found to be appropriate. The loss function considered was 
the mean squared error. The original dataset for each platform 
was split into training and test sets where the training set 
comprised 80 percent of the original dataset.  During training 
using keras, 10% of the training data was used for validation 
and the number of epochs was set to 200. 

 
Fig. 3. Dependence of Square Root of Mean Squared Error on Epochs on 

Training Set (Loss) and Cross-Validation Sets (val_loss). 

Fig. 3 shows the dependence of square root of mean 
squared error loss function on epochs. The loss functions on 
training set (loss) and cross-validation sets (val_loss) are 
shown in the Fig. 3. 

The deep neural network model for each operating system 
was later converted to a model to be incorporated in a mobile 
application. For the iOS operating system, the model was 
converted to a coreml model using coremltools [42]. For the 
Android operating system, the model was converted to a 
tensorflow lite model according to [43]. As reported in [35], 
the RSSI is manufacturer dependent, therefore even for the 
same operating system, it varies from a device from one 
manufacturer to another. 

VII. COMPARISON OF DEEP NEURAL NETWORK, DECISION 

TREE AND LOGARITHMIC DISTANCE PATH LOSS MODELS 

The accuracy of the deep neural network (DNN) model 
predictions was compared with the decision tree and 

logarithmic distance path loss model (LDPL). The root mean 
square deviation (RMSD), computed as the square root of the 
mean squared error (MSE) was used for the comparison. 
Equation 4 shows how the MSE is computed. 

MSE = (1/(N-1)) i (ypredicted,i – ytrue,i)
2
 

In equation 4, ypredicted represents the estimated target 
values, ytrue represents the ground truth (correct) target values 
and N is the number of elements in the population. The MSE 
was determined using the mean_squared_error builtin function 
in a python sklearn.metrics module [44]. 

The root mean square deviation (RMSD) was then obtained 
according to equation 5. 

RMSD = (MSE)
1/2
  

Fig. 4 shows the predictions of the deep neural network, 
decision tree as well as logarithmic distance path loss models 
for the iOS device. The maximum depth of the decision tree 
was set to 5. Also plotted is the training dataset. The trained 
models appear to reasonably fit the training dataset. 

 
Fig. 4. Comparison of Actual Measured Data against Deep Neural Network 

(DNN), Decision tree (DT) and Logarithmic Distance Path loss (LDPL) 

Models Predictions during Training for the iOS Device. 

Table I reports the RMSD computed according to equation 
(5) during training and testing of models. As reported in 
Table I, the DNN model performed better than the LDPL 
model during training and testing. However, the DT performed 
better than the DNN during training but the DNN performed 
better than DT during testing. This is attributed to overfitting 
by DT during training. Now, according to [28], it was reported 
that the DT performed better that the simplistic distance path 
loss model. This is also in agreement with the results reported 
in Table I. 

TABLE I. ROOT MEAN SQUARE DEVIATION (RMSD) CALCULATION FOR 

TRAINING AND TESTING THE DEEP NEURAL NETWORK (DNN ), DECISION 

TREE (DT) AND LOGARITHMIC DISTANCE PATH LOSS (LDPL) MODELS 

RMSD on training the models in m RMSD on testing the models in m 

DNN DT LDPL DNN DT LDPL 

0.41 0.15 0.46 0.44 0.49 0.57 

The total processor (CPU) time to make model predictions 
on the entire training and test datasets used in Table I was 
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compared for the three models. Table II reports the total CPU 
time taken by the models in seconds. 

TABLE II. TOTAL CPU TIME TAKEN TO MAKE MODEL PREDICTIONS ON 

THE DATASETS USED IN TABLE I. 

CPU time taken during training in 

s 
CPU time taken during testing in s 

DNN DT LDPL DNN DT LDPL 

0.091 0.00084 0.0008 0.095 0.00047 0.00098 

According to Table II, the DT model took the least total 
CPU time to make predictions on the test dataset compared to 
LDPL and DNN models. However, as reported in Table I, the 
DNN model performed better than the DT and LDPL models 
in terms of predictions on the test dataset. 

Owing to the fluctuation nature of the RSSI, a more 
accurate model for predictions is preferred despite the tradeoff 
in the CPU time taken to make predictions. As shown in 
Table II, the reported CPU times are all at sub-second level. 

The processing power of mobile devices is generally lower 
than those of conventional desktop machines. It is worth 
mentioning that the DNN models have been further optimized 
to efficiently run on mobile devices as reported in [42] for iOS 
devices and [43] for Android devices. The DNN model was 
therefore adopted for prediction of distance between two 
devices. 

VIII. DEVELOPMENT OF CROSS-PLATFORM CONTACT-

TRACING MOBILE APPLICATION 

In this work, a cross platform contact-tracing mobile 
application was developed. The targeted operating systems 
were iOS and Android. The application was developed in C# 
using Xamarin, a free, open source, cross-platform for building 
applications targeted at iOS and Android operating systems 
among others [45]. 

A number of features to be incorporated in the contact-
tracing application were identified. These include the ability to 
detect the presence of another person running the same 
application on their device within an accepted range and 
notifying the users. The capability to notify a user if they have 
been exposed to a reported positive COVID-19 case in the past 
fourteen days was also included. In order to achieve this, the 
system used an already existing repository of COVID-19 
patient data that contained unique diagnosis identifiers for 
patients. Furthermore, in case the user tested positive for 
COVID-19, the system was expected to provide an option to 
share their diagnosis identifier. This was an important feature 
that the application uses to notify others that they have come 
into contact with a positive case. A self-service feature where 
the user could query the application whether they have been in 
contact with a positive case was also included. 

In order to meet these requirements, suitable technologies 
were identified. Bluetooth Low Energy (BLE) [46] was ideal 
for detecting when one user was closer to another. The 
Bluetooth LE Received Signal Strength Indicator (RSSI) levels 
described earlier were used to determine whether users were 
close to each other, within 2 metres for a period exceeding 15 
minutes [18]. The deep neural network models described in 

Section VI were used to predict the distance between two 
users. The Global Positioning System (GPS) [47] / Cell Tower 
Triangulation [48] were used to determine the location in form 
of Latitude and Longitude coordinates. The location 
information was used for predicting COVID-19 hotspots. 

To facilitate the contact tracing process, each mobile 
application user was assigned a unique random identifier that 
was later securely shared with another user who is in close 
proximity as determined by the deep neural network model. 
The Bluetooth Low Energy Generic Attribute Profile (GATT) 
framework was adopted in this case since it enables exchange 
of data between two devices [49]. According to GATT, the 
data is encapsulated in services where each service contains 
one or more characteristics. 

The mobile application had GATT client and server 
capabilities. As a GATT server, the application was able to 
advertise services. To distinguish a mobile device running the 
contact tracing application from others, a unique service 
identifier following a universally unique identifier (UUID) 
format was generated for each device. Encapsulated in this 
service was a characteristic whose identifier was in universally 
unique identifier (UUID) format. The characteristic identifier 
was unique to the application and was used for contact tracing 
purposes. As a GATT client, the application was able to scan 
for a unique service associated with the contact tracing 
application and read the associated characteristics. 

To implement the GATT capabilities in the application, a 
cross platform framework named Shiny was adopted [50]. 
Shiny supports BLE client and hosting among several features. 
This framework was also found to be convenient in that in 
supports backgrounding which allows an application to 
continue running even when sent to the background. 

Fig. 5 is a top-level algorithm used to scan for BLE 
services, characteristics, RSSI and sending device 
manufacturer data among others. As shown in Fig. 5, the 
mobile application keeps scanning for devices and scan results 
are kept in a list. For every element of the list, the RSSI, 
manufacturer data as well as whether the device is connectable 
are obtained. With the obtained RSSI and sending device 
manufacturer data, an appropriate deep neural network (DNN) 
model is invoked to predict distance. In case the device is 
connectable, a connection was made to the device to discover 
offered services. The application checked for a particular 
service unique for contact tracing. If this service was available, 
the associated characteristics were obtained. The characteristics 
are used for contact tracing. 

 

Fig. 5. Top-Level Algorithm for Scanning for BLE Services, Characteristics 

and RSSI. 
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The predicted distance was used in further processing such 
as alerting the user in case the devices were too close. Datetime 
information was also captured in addition to Latitude/ 
Longitude coordinates. This information, together with the 
predicted distance from RSSI, sending device manufacturer 
data, characteristic UUID and contact time was stored in a 
local database in the user’s mobile device. 

After collecting this information, the contact tracing mobile 
application then securely transmitted this information to a 
central database of COVID-19 cases. An application 
programming interface (API) using DotNet core WebAPI 
development framework was written that allows for data to be 
shared from the mobile application to the database server using 
JavaScript Object Notation (JSON) as an exchange data format 
and HyperText Transfer Protocol (HTTP) protocol as a 
transport medium. 

 
Fig. 6. Some Features of the Contact Tracing Mobile Application as Shown 

in Android (Top Row) and iOS (Bottom Row) Operating Systems. 

A feature was also available that enables a user to 
determine in real-time whether they have been in contact with 
a positive COVID-19 case. The stored local contact tracing 
details for the last fourteen (14) days were then securely sent to 
the server and a Covid-19 database queried. If one of the 
contacts was recorded as a positive case in the COVID-19 
database, the user was then alerted without revealing further 
details. To support this feature, the COVID-19 server offered a 
web service that was accessed through relational state transfer 
(REST) application programming interfaces (API). 

Fig. 6 illustrates some features of the contact-tracing 
application. The mobile application provides real-time 
exposure alerts. The application also had a manual contact 
tracing feature to allow for positive diagnosed individuals to 
manually input the phone numbers of the contacts they have 
had met. In order to avoid abuse, a phone number verification 
feature was added. The application also incorporated location 
based services to get encrypted coordinates to be used in 
prediction of epicentres. 

Furthermore, the Latitude, Longitude and date time 
information from contact-tracing applications was sent 
securely to the Ministry of Health databases. This data can be 
displayed in real-time in a map for identification of possible 
hotspots as shown in Fig. 7. 

In this section it has been shown how the GATT framework 
was used to encapsulate and exchange data between Bluetooth 
devices embedded with GATT framework. Furthermore, the 
implementation of the deep neural network model in order to 
predict distance between communicating devices has been 
reported. 

 

Fig. 7. Using Location and Datetime Information from Contact-Tracing 

Applications for Identification of Hotspots. 

IX. CONCLUSION 

A number of digital contact tracing applications have been 
applied world-over to facilitate the contact-tracing process.  In 
this work, a cross platform contact tracing application that uses 
deep neural network models and Bluetooth Low Energy 
Generic Attribute Profile framework to determine and inform 
users of exposure to COVID-19 has been developed. The 
performance of deep neural network models has been 
evaluated against other models. The reported results show that 
the deep learning model performs well during testing. 

The proposed deep learning model appears to learn the 
nonlinear relationship between distance and RSSI values better 
compared to analytic and decision tree models. The analytic 
model had four parameters according to equation 3. This 
suggests that the analytic model overlooked some parameters 
that are useful in determining the distance between 
communicating devices. As regards to decision trees, a major 
limitation is their likelihood to overfit the data on the training 
set as the maximum depth increases. The smaller the maximum 
depth, the less is the generalizing ability. On the other hand the 
larger the maximum depth, the larger the likelihood of 
overfitting on the training set resulting in less accuracy on the 
test set. 

The developed contact-tracing application can be beneficial 
not only to COVID-19 prediction but also to other pandemics. 
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