
DEVELOPMENT AND IMPLEMENTATION OF AN
AUTOMATED BUILD PIPELINE MODEL FOR

PRIVATE NETWORKS

SAAIMAH PATEL



ZCAS UNIVERSITY

2023

DEVELOPMENT AND IMPLEMENTATION OF AN
AUTOMATED BUILD PIPELINE MODEL FOR

PRIVATE NETWORKS



SAAIMAH PATEL

A Final Year Research Project submitted in partial fulfilment of the

requirements for the degree of

Master of Science in Computer Science

ZCAS University

2023



DECLARATION

Name: Saaimah Patel

Student Number: G18021

I hereby declare that this final year research project is the result of my own work, except for

quotations and summaries which have been duly acknowledged.

Plagiarism check: %

Signature: Date: 31 December, 2023

Supervisor Name: Aaron Zimba

Supervisor Signature:

Date:



ACKNOWLEDGEMENT

I am grateful to express my deepest appreciation to my supervisor, Dr. Aaron Zimba,

for his invaluable guidance, patience, and advice throughout this project. His expertise,

support, and constructive feedback have been instrumental in its successful completion. I

am thankful for his dedication, availability, and mentorship, which have greatly contributed

to my academic growth. I am truly grateful for the opportunity to have worked under his

supervision.

THANK YOU.



DEDICATION

I would like to take this opportunity to express my heartfelt gratitude and appreciation

to my family. Their unwavering support, encouragement, and love have been the

foundation of my success throughout this journey. Their understanding, patience, and belief

in me have provided the motivation and strength to overcome challenges and pursue my

goals. I am truly grateful for their constant presence, guidance, and unwavering belief in

my abilities. Their support has been invaluable, and I am forever grateful for their

unwavering support and love.



ABSTRACT

This research investigates the creation and application of Automated Build Pipelines (ABP)

in private network settings with the goal of developing a model or framework that would

manage semantic versioning, increase operational efficiency, and reduce downtime. In

addition to identifying and analysing the risks and challenges, the research offers insights into

potential roadblocks and weaknesses. A thorough framework or model is created by the

discovery of knowledge gaps and restrictions to direct the evaluation, planning, and

implementation of the automated build process. A conceptual framework establishes the

principal characteristics of the proposed ABP.

Google Sheets and Google Looker Studio are used to show how the original concept is

practically implemented, taking into account the risks and obstacles that have been identified.

The performance and efficacy of the used model are evaluated after a careful analysis and

assessment of the data. By offering useful advice and lessons learned to companies looking to

deploy automated build pipelines on private networks, the study adds to the body of

knowledge. All things considered, this work contributes to the field's understanding and

offers insightful advice for implementing automated build pipelines in private network

environments successfully.

Key words: Automated Build Pipelines, Semantic Versioning, Continuous Integration (CI),

Continuous Deployment (CD)



DECLARATION 4
ACKNOWLEDGEMENT 5
DEDICATION 6
ABSTRACT 7
LIST OF TABLES 10
LIST OF FIGURES 11
LIST OF ABBREVIATIONS 12
CHAPTER 1 - INTRODUCTION 1

1.1 Background to the study 1
1.2 Problem Statement 1
1.3 Aim 3
1.3 Objectives of the study 3
1.4 Scope and Limitation 3
1.5 Significant of the Project 3
1.6 Research Questions 5
1.7 Preliminary sections of the project report 5

CHAPTER 2 - LITERATURE REVIEW 6
2.1 General Background 6
2.2 Broad literature review of the topic 6
2.3 Critical review of related works 8
2.4 Comparison with related works 10
2.5 Conceptual framework/Theoretical framework 11
2.6 Proposed model/system 13
2.7 Chapter Summary 15

CHAPTER 3 - METHODOLOGY 17
3.1 Research design 17
3.2 Adopted method and justification 18
3.3 Association of research method to project 19
3.4 Research data and datasets 19
3.5 Data collection methods and data analysis techniques 21
3.6 Ethical concerns related to the research 22
3.7 Chapter Summary 24

CHAPTER 4 - DATA, EXPERIMENTS, AND IMPLEMENTATION 25
4.1 Appropriate modelling in relation to project 25
4.2 Techniques, algorithms, mechanisms 26
4.3 Main functions of models or frameworks 28
4.4 Chapter Summary 29

CHAPTER 5 - RESULTS AND DISCUSSIONS 30
5.1 Results Presentation 30
5.2 Analysis of Results 33
5.3 Comparison to Related Work 35



5.4 Implications of Results 36
5.5 Chapter Summary 37

CHAPTER 6 - SUMMARY AND CONCLUSION 38
6.1 Summary of Main Findings 38
6.2 Attainment of Research Objectives 38
6.3 Contribution to the body of knowledge 40
6.4 Challenges and Limitations faced 41
6.5 Future works 41
6.6 Chapter Summary 42

REFERENCES 44



LIST OF TABLES

Table 2.1: Comparison with related works

Table 3.1: Metadata description



LIST OF FIGURES

Figure 1.1: Flow Diagram of sections of the report

Figure 2.1: The basic operation of CI/CD

Figure 2.2: The Docker Architecture

Figure 2.3: Proposed Model

Figure 3.1: Flow of Data Collection and Analysis

Figure 4.1: Visualisation of Data in Google Looker Studio

Figure 5.1: Relationship Analysis: Cost per Build and Operational Metrics

Figure 5.2: Relationship Analysis: Failure Rate and Operational Metrics



LIST OF ABBREVIATIONS

Automated Build Pipeline – ABP

Continuous Integration - CI

Continuous Deployment – CD

Open Source Software - OSS

Software Development Life Cycle - SDLC

Extreme Programming - XP

Lean Software Development - LSD

Feature-Driven Development - FDD



CHAPTER 1 - INTRODUCTION

1.1 Background to the study

The need for safe and effective private networks has increased at an unprecedented rate

due to the constantly changing field of information technology. Organisations are always

looking for novel ways to simplify network infrastructure administration since they are

compelled to safeguard critical data. Investigating Automated Build Pipelines (ABPs) as a

workable strategy for enhancing efficiency in private networks is one interesting direction.

The goal of this study is to thoroughly examine whether or not ABP implementation is

feasible in the setting of private networks. Because ABPs automate many crucial

components of network management, including as configuration, security enforcement,

and software updates, they offer a revolutionary paradigm shift. ABPs seek to minimise

human error, lower operating costs, and improve network stability by substituting

automated procedures for manual interventions (Smith et al., 2017).

This research recognises the difficulties in protecting private networks, which call for

careful preparation, conformity to regulations, and the implementation of strong security

measures . Organisations may be able to develop a more thorough and secure network

architecture by including these factors into the ABP framework.

The strong need for automation approaches derives from the rapid and effective

development of software, particularly for cloud-based systems. The advent of Continuous

Integration/Continuous Delivery (CI/CD) offers a series of procedures for the automated

development, testing, and rollout of new software. Consequently, in order to automate the

development and deployment of new software and apps, many businesses integrate CI/CD

pipelines into their platform (Bello et al., 2022).

1.2 Problem Statement

Private networks are becoming increasingly in demand at a time of constant technological

advancement. Enterprises, especially those managing confidential data, look for reliable

and effective ways to protect their information (Steffens, Lichter and Döring, 2018).

https://www.zotero.org/google-docs/?rufDPr
https://www.zotero.org/google-docs/?xSDM91


Simultaneously, network infrastructure management has become increasingly dependent

on the requirement for automated and efficient processes (Debroy and Miller, 2020). The

primary goal of this study is to determine whether it is feasible to use an Automated Build

Pipeline (ABP) to improve the performance of private networks.

Since the introduction of cloud service providers' pay-as-you-go models, corporations are

no longer needed to make an upfront commitment to purchase pricey hardware and the

first step of establishing the infrastructure. The time needed to deploy these computational

resources has decreased from days to a few minutes thanks to the usage of virtualization

and orchestration. That is insufficient, nevertheless, to develop a cloud-based

infrastructure (Garg and Garg, 2019)

The way network infrastructure is managed nowadays entails manual interventions, which

might result in security flaws and human mistake. The industry practice for managing

code is to use a cloud-based, secure git service (usually Github). Deploying platforms is

usually a tedious, time-consuming, manual procedure that involves installing several

private and secure physical or cloud servers using virtual private networks (VPNs), setting

up the environment, and then releasing the code. Every time there is a modification, the

process is repeated. This has a major effect on the software development team's speed and

agility. (Mysari and Bejgam, 2020).

(Zampetti et al., 2020) claims that industrial organisations who implemented continuous

improvement (CI) reported significant increases in productivity, customer satisfaction, and

the ability to provide high-quality products rapidly through iterative procedures. The

continuous integration (CI) methodology is one of the most widely used software

engineering approaches because of its indisputable advantages, which have also attracted

many Open Source Software (OSS) engineers to adopt it. Even while continuous

integration (CI) is becoming more and more common, its widespread use makes it

challenging to implement in traditional development contexts. As such, in their most

recent research, scholars have examined the challenges and issues associated with the

transition to CI. They found that two of the difficulties developers have are identifying

build issues and automating the build procedure.

https://www.zotero.org/google-docs/?67hTZ2
https://www.zotero.org/google-docs/?WO4kXc
https://www.zotero.org/google-docs/?8ffZNE
https://www.zotero.org/google-docs/?gt0AxF


1.3 Aim

The aim of this research project is to develop and implement an automated build pipeline

for private networks.

1.3 Objectives of the study

To achieve the aim above, these are the objectives set:

1. To identify the challenges and risks associated with implementing automated

build pipelines in private networks in order to use them to develop a

framework.

2. To develop a framework for assessing, planning, and executing the

implementation of an automated build pipeline for private networks with the

goal of achieving operational efficiency, handling semantic versioning, and

minimising downtime.

3. To develop and implement an automated build pipeline model for private

networks

4. To evaluate the developed model

1.4 Scope and Limitation

The frameworks and pipeline model development for an automated build pipeline for

private networks will be covered in this project. It will also include the identification of

security risks and issues that impact the pipeline. However, there will be no deployment

and machine learning involved. It has been deemed to exceed the scope of this project

1.5 Significant of the Project

In an era of increasing cyber threats and data breaches, this study is significant because it

explores innovative ways to enhance automated deployment within private networks. The

findings could contribute to more reliable procedures and quicker implementation.

Additionally, this research could greatly increase an organisation's operational efficiency.

Businesses may limit human errors, cut down on downtime, and save time and money by

automating deployment operations.



Automation can result in significant cost savings for companies if it is shown to be more

economical than manual techniques. This is especially important in situations where funds

are limited. Best practices and guidelines for deploying automated build pipelines in

private networks can also be developed with the aid of this research. For businesses

wishing to implement automation, these guidelines can be a great tool for ensuring a safe

and seamless transition (Lunde and Colomo-Palacios, 2020).

By addressing gaps in the existing literature and conducting rigorous research, this study

can make significant contributions to the academic field. It can expand the body of

knowledge related to private networks, automation, and their intersection, serving as a

reference for future researchers.

Private networks are essential to the operations and data security of organisations in a

variety of industries. The researcher's conclusions can directly help these businesses by

offering guidance on how to improve integration and deployment.

The suggested ABP would automate crucial network deployment procedures like software

upgrades, configuration management,continuous integration and deployment in order to

lessen these problems. Network reliability will be improved and operational overhead will

be decreased by this automation. This project aims to automate this process using the

CI/CD technique. After changes to the source code are merged into the main branch,

versioning and platform deployment are meant to be handled by a "orchestrator" (Pinto et

al., 2018) As mentioned in With continuous integration and delivery (CI/CD), deploying a

system on a regular basis necessitates extensive post-deployment attention to the most

recent system release or update. One of a product's most important lifecycle components is

continuous development, delivery, and deployment. (Dwivedi, Semalty and Moondra,

2021)

Software nowadays is created quickly. Organisations mostly rely on automated build, test,

and release procedures to maintain that fast pace. In order to achieve this, developers can

make incremental codebase changes, which are then collected, linked, and packaged into

software deliverables, tested for functionality, and distributed to end users by Continuous

Integration and Continuous Deployment (CI/CD) services (Gallaba, 2019)

https://www.zotero.org/google-docs/?F427FM
https://www.zotero.org/google-docs/?3QSZH8
https://www.zotero.org/google-docs/?3QSZH8
https://www.zotero.org/google-docs/?FEUJbr
https://www.zotero.org/google-docs/?FEUJbr
https://www.zotero.org/google-docs/?dQE6JC


Workflows for Continuous Integration, Delivery, and Deployment are dictated by both

technological needs and organisational cultures and preferences (Railić and Savić, 2021).

This research offers a method for creating and executing a continuous integration/delivery

(CI/CD) process that adheres to best practices for the build, test, deploy, and release

phases. Additionally, it explains the difficulties in designing CI/CD systems and suggests

possible solutions.

1.6 Research Questions

Below are the research questions:

● What are the challenges and risks associated with implementing automated build

pipelines in private networks?

● How do these risks and challenges impact the development of the framework?

● What is the significance of this project?

● What metrics will be created and used to evaluate the model created?

1.7 Preliminary sections of the project report

These are the sections below:

Figure 1.1: Flow Diagram of sections of the report

https://www.zotero.org/google-docs/?sNxdNj


CHAPTER 2 - LITERATURE REVIEW

2.1 General Background

Examining the current issues in private networks is essential to comprehending the context

of automating build pipelines for networks. These difficulties frequently include the

complexity of network infrastructures, the necessity for quick responses to accidents and

vulnerabilities, and the sophistication of cyber threats (Riti, 2018)

Automation has become more popular as a solution for these problems. The advantages of

automating deployment tasks have been emphasised by research in this field (Mitesh S.,

2015). Nonetheless, there is a lack of information in this literature about its application to

private networks because it mostly concentrates on general networks. Though automation

in networking is becoming more and more common, less research has been done

especially on private networks. Research on the benefits and difficulties of integrating

automation in private network environments are hard to come by.

This research study emphasises the growing importance of automation in networks,

particularly in private network environments. Existing research discusses the benefits and

challenges of automation, but more specific research is required in the context of private

networks.

2.2 Broad literature review of the topic

The methods used in traditional software development are inadequate to meet the demands

of modern enterprises. Software development organisations find agile methodologies

attractive because they enhance the Software Development Life Cycle (SDLC)'s

flexibility, efficiency, and speed. Applying the twelve AgileManifesto principles to

methods like Extreme Programming (XP), Scrum, Kanban, Crystal, Lean Software

Development (LSD), and Feature-Driven Development (FDD), one can establish the

integrity of procedures and practices as well as Agile Project Management. Using an agile

methodology with a Continuous Integration (CI) pipeline has improved productivity and

sped up software delivery (Arachchi and Perera, 2018).

As mentioned in (Shahin, Ali Babar and Zhu, 2017), Continuous Integration (CI),

Continuous Delivery (CDE), and Continuous Deployment (CD) are strategies that assist

https://www.zotero.org/google-docs/?pHraTz
https://www.zotero.org/google-docs/?0QgrQH
https://www.zotero.org/google-docs/?Nc1q61


organisations in accelerating the development and delivery of software products while

maintaining quality. These methods offer advantages such as immediate feedback from the

software development process and customers, frequent and dependable releases, increased

customer satisfaction and product quality, and strengthened relationships between

development and operations teams. Adopting continuous practices, on the other hand, is

not a simple undertaking since organisational procedures, practices, and tools may not be

prepared to support the complex and hard nature of these practices.

Collaboration between multiple organisations in various locations is necessary for

large-scale software development, and this can be facilitated by using a version control

system (VCS). Git is a source code management system and free, open-source DVCS.

Repo is a repository management tool that maintains a secret repo directory with all

project names and paths in an XML file and unifies several Git repositories into a single

Git repository. Thanks to the guidance of key concepts like build automation, automated

testing, and revision controls, continuous integration (CI) has developed into a best

practice for software development. The best approaches for maintaining applications'

deployability while adhering to strict quality standards are continuous deployment and

delivery. (Hung and Giang, 2019)

According to (Jin and Servant, 2020), empirical research has looked into the practice of

Continuous Integration (CI) and its costs, with an emphasis on the influence on software

quality, productivity, bug-fixing, and testing. The high cost of running builds is a big

concern in CI, with large businesses like Google and Microsoft incurring costs in the

millions of dollars. Understanding what causes long build durations and utilising machine

learning classifiers to forecast test case failures are two ways to reduce the cost of CI. This

study, on the other hand, approaches the expense of CI in a different way by lowering the

overall number of builds that are done. It also forecasts build outcomes for any type of

modification, complementing existing cost-cutting strategies in CI.

(Jin and Servant, 2020) further helps explain compilation, unit testing, static analysis,

server problems, architectural dependencies, stakeholder role, programming language,

build environment changes, and persistent build breaks are all characteristics of failing

builds. Some studies discovered change characteristics that correlate with failure builds,

such as the number of commits, code churn, the number of altered files, the build tool, and

https://www.zotero.org/google-docs/?RWC0xL
https://www.zotero.org/google-docs/?MItQkL
https://www.zotero.org/google-docs/?5TiISc


statistics on the most recent build and the committer's history.Predicting failed builds has

been difficult in industrial settings where continuous integration has not yet been

implemented. Cascade classifiers, semi-supervised algorithms, and predictors rely on the

outcome of the previous build, although their predictive power may be reduced in

cost-cutting situations. SmartBuildSkip, on the other hand, does not predict based on the

last build's state and type.

Figure 2.1: The basic operation of CI/CD

2.3 Critical review of related works

One of the works that was found to be similar was “Automated Cloud Infrastructure,

Continuous Integration and Continuous Delivery using Docker with Robust Container

Security“ by Somya and Satvig Garg. (Garg and Garg, 2019) offers a thorough

introduction to container security, CI/CD with Docker, and cloud automation. On the other

hand, they did not highlight any similar works done or mention them. It also fails to

include a thorough summary of the relevant literature. However, it does acknowledge the

important contributions of earlier works. Furthermore, the work fails to point out any

shortcomings or gaps in existing literature and fails to explain how it fills these holes.

The part of the paper that discusses using Docker containers to establish continuous

integration and continuous delivery, or CI/CD, is quite helpful. The part on Docker

Security is a little brief. It would be helpful to have more information on the precise

security measures that can be used to protect Docker containers.

https://www.zotero.org/google-docs/?P5adgr


Figure 2.2: The Docker Architecture

Another article that was viewed was the "Continuous Integration and Continuous Delivery

Pipeline Automation for Agile Software Project Management" by Arachchi and Indika

Perera. This article focused on expanding the CI/CD pipeline with three automated

phases—benchmarking, load testing, and scaling. While the load testing step uses

production traffic to obtain accurate performance statistics, the benchmarking phase makes

use of a test bench to reduce system downtime. After load testing and benchmarking are

finished, the scaling phase is evaluated.

(Arachchi and Perera, 2018) gives a thorough overview of the methodology, including the

instruments used, the phases that are sequential, and the rationale for the suggested

approach in an effective manner. It also contains relevant performance measurements and

a test bench configuration using local virtual instances; nonetheless, the authors note that

the simplicity of the application under test has limits. The paper addresses limitations and

outlines possible future study while succinctly summarising the main findings and

highlighting the benefits of the suggested strategy. Suggestions for enhancements

comprise extending the assessment to more intricate apps and cloud-based settings, as well

as offering a comprehensive dialogue of obstacles and constraints.

https://www.zotero.org/google-docs/?HRiyN2


2.4 Comparison with related works

This study was comparable to several publications that had similar research. The table

below shows a comparison held between similar research or projects and the proposed

framework.

Table 2.1: Comparison with related works

Model Cost
Effectiveness

Merging
Conflicts
Handling

Semantic
Versioning

Failed
Builds
Handling

Automated
Build from
git provider

Private
Network

Applicability

(Pinto et al., 2018) ✓ ✗ ✗ ✓ ✗ ✗

(Hung and Giang, 2019) ✓ ✗ ✗ ✓ ✗ ✗

(Garg and Garg, 2019) ✗ ✓ ✓ ✗ ✓ ✗

(Arachchi and Perera,
2018)

✗ ✗ ✗ ✗ ✗ ✗

Proposed Model ✓ ✓ ✓ ✓ ✓ ✓

Choosing a Continuous Integration and Delivery (CI/CD) approach usually involves an

issue of cost-effectiveness. Pinto et al., 2018 and Hung an Giang, 2019 excel in this area

by highlighting the optimisation of resources and the reduction of infrastructure costs.

Arachchi and Perera, 2018 and Garg and Garg, 2019 might not be as cost-effective,

though. Garg and Garg's dependence on outside Git providers might raise expenses;

nevertheless, Arachchi and Perera, 2018 are unclear in this regard.

Two essential components of CI/CD are versioning and conflict resolution. Here, Garg &

Garg, 2019 takes the lead by providing integrated tools to manage codebase conflicts and

guaranteeing clarity through semantic versioning support. In order to resolve conflicts,

Pinto et al., 2018 and Hung and Giang, 2019 may need to use additional tools or manual

intervention, and they do not discuss versioning procedures.

Another fascinating contrast is between network support and build automation. Garg &

Garg, 2019 is noteworthy once more since it allows automated builds to be started

automatically from Git providers, much like a flowing procedure. The other models could

provide potential bottlenecks in the workflow by requiring manual build initiation or not



integrating with certain Git platforms. Furthermore, none of the models specifically

address support for private networks, restricting their application to public cloud

installations for the time being, which may not be appropriate for enterprises with more

stringent security requirements.

Different models handle build failures in different ways. Hung and Giang, 2019 and Pinto

et al., 2018 appear ready for obstacles, maybe providing alert systems and automatic

remedial measures. There is ambiguity on how Garg and Garg, 2019 and Arachchi and

Perera, 2018, handle unsuccessful builds.

The proposed framework provides an affordable means of handling disputes and

guaranteeing effective use of available resources. It follows the accepted practice of

semantic versioning, which enables several developers to collaborate on the same

codebase. The model provides safe access to the software development environment,

manages unsuccessful builds, and automates Git builds. Moreover, it facilitates automated

builds, which cut down on time spent on manual build procedures and human mistakes.

2.5 Conceptual framework/Theoretical framework

The basis of any Automated Build Pipeline for private networks is a strong conceptual

architecture that includes multiple essential components. Together, these components

guarantee the scalable, secure, and effective implementation of infrastructure.

Continuously Integrated and Deployed: The Continuous Integration and Continuous

Deployment (CI/CD) technique is the foundation of the framework. CI/CD promotes

agility and lowers mistake risk by automating the integration of code changes, testing, and

smooth deployment. This procedure powers the automation of crucial build pipeline steps

and is the basis of the ABP.

Automating the Build Pipeline: The code compilation, testing, and deployment processes

are all automated by the build automation process, which is the core of the system. It takes

the place of manual interventions. By doing this, human error is eliminated and the time

and resources needed for network deployments are greatly decreased. The ABP

streamlines the process by integrating software updates, security policy enforcement, and

configuration management.



Security: The architecture is integrated with strong network security standards. These

procedures protect sensitive data and uphold compliance requirements by ensuring that all

automated processes comply with industry-specific norms and regulations. Maintaining a

safe and reliable network environment requires including security measures into the ABP

from the beginning.

Increasing Operational Effectiveness: Through the automation of repetitive and

error-prone tasks, the ABP seeks to dramatically improve operational effectiveness. A

well-designed ABP has minimised errors, minimised downtime, and optimise resource

utilisation. For businesses in charge of private network management, this means increased

efficiency and lower costs.

Scalability for Growth: Scalability has to be considered in the design of the ABP

architecture. The automated processes should be flexible enough to accommodate changes

in network requirements and complexity without sacrificing performance. Assessing the

ABP's scalability guarantees both its long-term sustainability and its ability to adjust to

changing needs.

Industry Regulations and Compliance: It is critical for private networks to adhere to

industry-specific regulations. In order to guarantee that automated processes comply with

legal and regulatory requirements, the ABP framework must be created in line with these

regulations. In addition to reducing compliance risks and encouraging responsible network

administration, this builds confidence and accountability.

Economic Considerations: Because implementing an ABP requires investment, it is

important to determine if it is economically feasible. Organisations thinking about

automation can gain important insights by analysing possible cost savings and contrasting

them with the cost of using old manual techniques. It is important for the ABP framework

to be built with a return on investment in mind, since this will support its implementation

and guarantee its long-term viability.

Mixed-Methods Approach: The ABP framework uses a mixed-methods approach to obtain

a thorough grasp of the research subject. By fusing qualitative evaluations with

quantitative data analysis, this method offers a comprehensive grasp of the security and

operational efficiency consequences of automated network deployment. By using this



method, the study explores the ABP's efficacy and effects on private networks in greater

detail.

The cornerstone for the investigation and creation of an ABP for private networks is laid

by this conceptual framework. The research seeks to improve the management and

operation of private networks by tackling each of these crucial components in order to

develop a safe, effective, and scalable automated network deployment solution.

2.6 Proposed model/system

Based on the conceptual framework described above, the following methodology for

building and implementing an Automated Build Pipeline (ABP) for secured private

networks is proposed:

1. Architecture of the System: The ABP will be modular in design, with discrete

components for code compilation, testing, deployment, and configuration management.

This modularity facilitates customisation and scaling. Throughout the pipeline, a dedicated

security layer will be included, enforcing network security procedures and compliance

regulations at each level. This layer could include systems for vulnerability detection,

access control, and encryption. A central orchestrator will oversee the execution of ABP

stages, assuring smooth execution, fault management, and resource optimisation.

2. Integration of Continuous Integration and Continuous Deployment (CI/CD): Code

changes will be maintained and versioned in a centralised repository, with any alteration

activating automated build triggers. Additionally, a full suite of automated tests spanning

functional and security elements will be added into the pipeline. The results of the tests

will determine the success of the build and, if necessary, will cause rollbacks. After

successful testing, the ABP will deploy the tested build to the target network environment

automatically. Configuration management, software updates, and policy enforcement are

all part of this.

3. Network Security and Regulatory Compliance: Before deployment, the ABP will use

dynamic security analysis tools to uncover vulnerabilities in the build. This analysis will

guide security patching and configuration changes .Furthermore, the ABP will use

automated audits and reporting mechanisms to continuously monitor compliance with



industry-specific regulations. This ensures that legal and security standards are followed at

all times. To protect sensitive data and prevent unauthorised access, communication

between ABP components and network devices will use secure protocols such as HTTPS

and SSH.

4. Scalability and operational efficiency: The ABP will create thorough data on build

progress, resource utilisation, and future concerns. Real-time notifications will notify

network administrators of significant events that need to be addressed. The ABP will also

allocate and optimise resources dynamically based on build requirements, minimising

resource waste and ensuring efficient operation. The ABP will be designed with horizontal

scalability in mind, enabling for easy extension to suit rising network size and complexity

without sacrificing performance. Horizontal scalability, also known as scaling out, refers

to a system's ability to handle increased workload by adding additional machines (nodes)

to its existing infrastructure. Vertical scaling, on the other hand, entails adding more

resources (e.g., CPU, RAM) to existing computers.

5. Economic Feasibility Study: A complete cost-benefit analysis should be performed to

compare the initial investment and continuing maintenance costs of ABP with possible

reductions in operational expenses and resource utilisation. To reduce upfront expenses

and allow for gradual adoption and adaptation of the ABP within the network

environment, consider a phased deployment plan.

6. Mixed Methods Approach to Research: The ABP will be outfitted with sensors that will

collect information such as build times, resource utilisation, error rates, and compliance

measures. This data will be analysed to determine ABP's operating efficiency and

effectiveness. To demonstrate the benefits of ABP implementation, the collected data will

be compared to existing benchmarks and performance indicators of typical manual

deployment techniques.



Figure 2.3: Proposed Model

This proposed model offers an overview of the ABP development and implementation

process at a high level. It prioritises security, efficiency, and scalability as well as a

mixed-methods research methodology for complete evaluation. More research and

development is required to fine-tune the individual technological components and

implementation methodologies for various private network settings and industry

requirements.

2.7 Chapter Summary

This chapter provided a basic background, reviewed the literature, critically analysed

related works, and made comparisons between them in order to provide an in-depth basis

for understanding the research challenge. Through the identification of knowledge gaps

and constraints, this review prepared the way for the creation of a unique ABP framework

designed for private networks. The next section of the chapter provided a conceptual

framework that outlined the main features of the suggested ABP, with a focus on

scalability, automated build pipelines, strong security procedures, and continuous



integration and deployment. The proposed ABP model/system was finally introduced in

further depth as the chapter came to a close, laying the groundwork for future development

and assessment of it in later chapters



CHAPTER 3 - METHODOLOGY

3.1 Research design

This study looks at how ABPs testing affects important construction metrics using

simulated data and a descriptive research methodology. Our goal is to obtain important

knowledge about how ABP interacts with different build complexities so that we can

improve our build performance tactics.

The main objective is to examine the complex link that exists between ABP setups and

critical build parameters, such as resource utilisation, build time, and error rate. Every one

of these indications presents a different angle on the stability and effectiveness of the

build. This can improve our understanding by analysing data across a range of

construction difficulties because different build types may react differently to ABP

adjustments.(Lunde and Colomo-Palacios, 2020)

Firstly, we plan to routinely develop simulated data that closely reflects real-world

circumstances in terms of precision, ranges, and distributions in order to foster an

environment that is favourable for research and experimentation. There are various

benefits to this strategy. By overcoming the obstacles to real-world data access, it permits

rapid iteration and resource- and logistically-free testing of different ABP configurations.

Furthermore, controlled variable manipulation is made easier by simulated data, which

allows us to isolate and pinpoint the precise impacts of ABP on build metrics while

accounting for outside influences.

It does, however, recognise the inherent drawbacks of simulated data. Even while it helps

research and offers insightful information, it is unable to accurately capture the nuanced

details of actual construction sites. As a result, we intend to remain open and honest about

the simulated nature of the data throughout our investigation and to interpret our results in

light of these constraints.

To put it simply, this research methodology uses simulated data to reveal the nuanced

effects of ABP testing on building performance. Through an examination of the

relationship among ABP, build metrics, and build complexities, our goal is to offer useful

https://www.zotero.org/google-docs/?rmFeOX


advice for streamlining build procedures and producing software that is dependable and

efficient.

3.2 Adopted method and justification

The chosen methodology for this research design is a descriptive one that makes use of

simulated data to examine how ABP testing affects important metrics. This section

outlines the benefits and drawbacks of the selected approach and justifies its selection.

For this study, a descriptive research approach makes sense since it enables a detailed

analysis of the connection between ABP setups and significant build metrics. These

metrics, which include build time, mistake rate, and resource utilisation, may be described

and analysed to provide a thorough understanding of build stability and efficiency

The use of simulated data allows for the creation of a controlled environment that closely

mimics actual conditions. There are various justifications for this methodological decision.

First of all, it gets around the difficulties or practical limits associated with obtaining

real-world data. The research may swiftly iterate and test different configurations without

being constrained by external resource limits by producing simulated data (Koopman,

2019)

Additionally, controlled variable modification is possible when employing simulated data.

By taking into consideration potential confusing circumstances, this control makes sure

that the effects seen on the build metrics can be specifically linked to the adjustments

under test. The study can offer more precise insights into the connection between ABP and

the metrics.

This approach is justified by several factors:

● By concentrating on a single case study, the impact of the ABP can be isolated and

variables can be better controlled, reducing the impact of outside variables.

● By making use of system logs and performance dashboards that are already in place,

less additional data gathering work is required, which improves research efficiency

and reduces resource usage.

https://www.zotero.org/google-docs/?QbXOYg
https://www.zotero.org/google-docs/?QbXOYg


● Although the measurements and analysis methods utilised are specific to one

scenario, they may be applicable to other protected private networks as well, offering

insightful information that may find wider applicability.

In conclusion, the chosen study design investigates the effect of ABP performance through

the use of simulated data and a descriptive methodology. This approach offers useful insights

for streamlining build procedures and producing dependable software, while enabling a

comprehensive exploration of the connection between ABP, build metrics, and build

difficulties

3.3 Association of research method to project

The project's goals were done by the study method that was selected: a descriptive strategy

combined with simulated data. Using an analysis of the interactions between ABP and

build time, error rates, and resource utilisation, this method delves into the complex

relationship between ABP and chosen metrics. This reflects the project's aim to

comprehend the aspects of the ABP across various difficulties, each in a different way that

will guide the development of build methods that are optimised.

But the study makes use of simulated data to test the impact of ABP. Here's where

simulated data comes in handy: it allows quick testing with ABP setups without the

logistical limitations of real-world access. By carefully adjusting the variables, it is

possible to determine the exact impact of ABP on construction metrics without using

actual data, much like when evaluating real-world data on each factor. This method yields

priceless information for enhancing ABP and improving build efficiency.

The research approach is essentially a means of conducting controlled experiments and

descriptive analyses. This partnership sheds light on the connections between the ABP and

its functionality, thereby coordinating the creation of ideal build procedures and producing

outstanding software solutions.

3.4 Research data and datasets

In order to shed light on the complex relationship between ABP and important

building performance measures, this study uses carefully constructed simulated data. Our



analysis and insights are based on this data, which is tabulated and displayed in Google

Looker Studio reports.

Key performance indicators for seven different pipeline topologies are included in the

simulated dataset. These metrics capture the duration of each build process (Build Time),

resource utilisation (Resource Utilisation %), frequency of errors (Failure Rate %), response

time (Latency), cost per build (Cost per Build), identified security vulnerabilities (Security

Incidents), and user feedback on the experience (User Feedback).

We can enable visualisation by connecting Looker Studio to the data source. We are able to

perform comparative analyses of performance metrics across configurations, find correlations

between variables like resource allocation and security outcomes, and create engaging and

educational reports for project stakeholders thanks to this translation of raw data into

interactive dashboards and reports. Table 3.1 below illustrates the metadata of the datasource

that is connected to Google Looker Studio.

Table 3.1: Metadata description

Data Meaning
Build Distinct identity for the execution of a certain build procedure

Time (min) The build's duration, expressed in minutes

Resource
Utilisation (%) Percentage of resources made accessible and used during the build

Failure Rate (%) Percentage of builds that were unsuccessful in finishing

Latency (sec) The amount of time it takes a build to begin processing after it is triggered

Cost per Build
(USD) The amount of money spent on each build's execution

Security Incidents
(count)

The amount of instances associated with security that happened during the
build

User Feedback User-provided qualitative input on their impressions of the build process

Pipeline
Configuration

A brief description of the particular configuration parameters used in the build
process



Using simulated data has a number of clear benefits. First of all, it offers a regulated setting

where variables may be accurately adjusted and the distinct effects of ABP changes on

metrics can be seen. Second, it enables fast experimentation by enabling the testing and

iteration of different configurations without the limitations of real-world implementation.

Last but not least, uniformity of the data produced under the same circumstances guarantees

precise comparisons and reduces superfluous noise.

3.5 Data collection methods and data analysis techniques

The purpose of this study is to provide light on how ABPs affect performance

measures through the use of carefully constructed simulated data. In order to overcome the

difficulties in obtaining real-world data and guarantee a safe environment, a specialised

computer model simulates actual construction situations and produces detailed data for seven

different ABP pipeline configurations. The distribution of resources and security measures

differs for every configuration, which produces a comprehensive dataset that includes

important parameters like build time, resource utilisation, failure rate, latency, cost per build,

security incidents, and user feedback. For accessibility, organisation, and a smooth interface

with Google Looker Studio for further visualisation and analysis, this data is safely kept

inside a Google Sheet. This process is illustrated in figure 3.1 below.

Figure 3.1: Flow of Data Collection and Analysis

We use a multimodal method to derive useful insights from the data. The fundamental

tendency and variability of each metric across various configurations are summarised



and characterised by descriptive statistics, which include means, medians, standard

deviations, and ranges. This analytical process is further strengthened by Google

Looker Studio, which creates interactive dashboards and reports that effectively

convey important findings through the use of stunning visuals. Heatmaps provide

deeper insights into intricate linkages within the data, scatter plots show correlations

between variables, bar charts enable performance comparisons between

configurations, and line graphs visualise trends and patterns over time.

Our goal is to derive meaningful insights from the simulated dataset by giving priority

to strong data collection and analysis approaches. As a result, it will be easier to

create evidence-based suggestions for improving ABP testing and construction

performance in subsequent studies and real-world applications.

3.6 Ethical concerns related to the research

While ABPs offer private networks efficiency, they also bring up ethical concerns that

need to be addressed. This subsection delves into possible effects on biases in

algorithms, job displacement, data privacy, and the sustainability of the environment.

We aim to clear the way for the ethical, secure, and responsible development and

application of ABPs in private networks by addressing these issues head-on (Rubert

and Farias, 2022). Some of these issues might be:

Data security and privacy:

Firstly, automating network deployment procedures may lead to the creation of fresh

points of entry and vulnerability for hackers. To reduce these risks, the research

should take strong security precautions and penetration testing into account. Another

concern would be the sensitive information about user behaviour and network activity

may be gathered by the pipeline. The storage, security, and usage of this data must be

considered in the research to ensure openness and adherence to data privacy laws.

Lastly, cybercriminals may find it simpler to control a network or pilfer information

when there is automation in place. To stop unwanted access and keep track of actions,

https://www.zotero.org/google-docs/?q66COl
https://www.zotero.org/google-docs/?q66COl


the project should take audit logs and access control systems into account (de Bruin

and Floridi, 2017)

Fairness and Bias:

One major concern would be the automated pipeline may reinforce pre existing biases

in the data it processes or the network design. In order to guarantee just and equitable

network access and resource allocation, the research should take into account

techniques for detecting and reducing algorithmic bias. (Soares et al., 2022)

Opacity and accountability can also be categorised as an ethical issue. It can be

challenging to comprehend and troubleshoot complex automated systems. By offering

precise documentation and explainability procedures for the pipeline's

decision-making procedures, the research should allay worries about transparency,

(Elazhary et al., 2022) illustrated in their article.

Impact on society and loss of employment:

Automation and job loss: IT workers may lose their jobs as a result of automating

network deployment operations. In addition to examining strategies to lessen job

displacement, such as retraining programmes or the creation of new work

opportunities, the research should take into account any potential societal impacts.

Digital gap and accessibility: Automating network administration could make people

and communities who don't have access to technology or training even more

marginalised. The study should address the moral ramifications of growing the digital

divide and provide ways to guarantee that everyone has fair access to network

resources (Garg and Garg, 2019)

Control and supervision:

Absence of defined rules: Private network automated systems regulations and ethical

frameworks are still developing. To guarantee the appropriate creation and

implementation of such systems, the research ought to promote precise rules and

industry best practices (Steffens, Lichter and Döring, 2018)

https://www.zotero.org/google-docs/?lvvOVW
https://www.zotero.org/google-docs/?lvvOVW
https://www.zotero.org/google-docs/?zYqrQc
https://www.zotero.org/google-docs/?R6ofpW
https://www.zotero.org/google-docs/?yn7EvP
https://www.zotero.org/google-docs/?sKGLyM


Accountability and transparency for algorithms: How to guarantee accountability and

transparency for algorithmic decision-making, as well as who bears responsibility for

automated systems' activities, should be the focus of this project (Kessel and

Atkinson, 2018)

By anticipating these ethical challenges, research on automated build pipelines can

assure responsible development and deployment of these technologies in the future,

encouraging secure, fair, and sustainable private networks.

3.7 Chapter Summary

The design for the proposed model was discussed in this chapter. It provides a

thorough justification for the selected approach, demonstrating how it supports the

project's objectives. The chapter then dives into the data that was used, describing its

properties and the methods used to collect and examine it. Transparency and ethical

research techniques are ensured by addressing ethical issues pertaining to simulated

data. This chapter essentially establishes the foundation for the data-driven insights

that follow, making it easier to comprehend how different aspects affect the efficiency

of the build pipeline.

https://www.zotero.org/google-docs/?XxKAjY
https://www.zotero.org/google-docs/?XxKAjY


CHAPTER 4 - DATA, EXPERIMENTS, AND IMPLEMENTATION

4.1 Appropriate modelling in relation to project

This study makes use of a specialised simulation model that is intended to replicate

real-world building scenarios as precisely as possible and to enable controlled

experimentation with ABP testing in the particular context of the project. Key characteristics

and variables related to the project's particular building procedures, resource limitations, and

security requirements are incorporated into the model.

The intricate linkages between ABP testing, build time, resource utilisation, failure rates,

latency, cost per build, security events, and user feedback are precisely captured by this

customised model. It makes it possible to precisely modify resource allocations, security

measures, and ABP configurations, allowing for the monitoring of their effects on these

crucial performance indicators. The extensive simulated data produced by this controlled

environment precisely matches the project's goals and needs.

The model's parameters and variables are carefully calibrated to meet the particulars of the

project in order to guarantee the model's relevance and applicability within it. As a result, in

the particular context of the project, decisions about ABP optimization and construction

performance enhancement will be made directly informed by the model's insights.

But it's important to recognise that every simulation model has its own set of constraints. It

provides a useful controlled environment for research, but it is unable to perfectly capture the

complexities and unpredictability of actual construction projects. Because of this, extending

the model's results to actual situations should be done so cautiously, taking uncertainties and

other outside influences into account.

We use a two-pronged method to solve these limitations and guarantee the continuous

correctness and efficacy of the model. First, we continuously validate the model's outputs

throughout the research process by contrasting it with real-world data that is readily available

or with expert commentary. Second, we use an iterative refinement approach, making

changes to the model's assumptions and parameters in response to the validation outcomes.

This enhances the validity of the model's conclusions and guarantees that it will continue to

be in line with the particular needs of the project



Through the strategic application of this customised simulation model, which is continually

validated and improved, our goal is to produce trustworthy insights that directly inform the

optimisation of ABP and performance in the particular context of the project. Through

recognition of the inherent limitations of any simulation and implementation of suitable

mitigation techniques, our goal is to produce solid results with immediate practical

significance for the project's successful completion.

4.2 Techniques, algorithms, mechanisms

This section examines the particular methods, procedures, and systems used in the simulation

model to replicate actual building situations and assess the effects of ABP testing.

We utilise an agent-based methodology in which discrete entities (agents) embody different

aspects of the construction process (e.g., tasks, resources) communicate and adjust according

to pre-established rules and algorithms. The intricate interactions between many components

in a real-world construction project are mirrored in this dynamic agent interaction.

We also use Monte Carlo simulations to take into consideration the inherent uncertainty and

randomness found in real-world building. By adding stochastic components to the model and

producing several conceivable results for every experiment, this method offers probabilistic

insights into the effects of ABP in different scenarios.

To simulate the sequential character of construction processes, we apply discrete event

simulation. This enables the precise assessment of performance indicators like build time and

resource utilisation by allowing us to follow the occurrence of separate events (e.g., task

completion, resource allocation) over time.

Descriptive statistics, a technique employed in this study, entails summarising important

metrics for various setups, including build time, resource utilisation, and failure rates. A

summary of the data is given by descriptive statistics, making it possible to compare and spot

patterns or trends. Data analysis requires not just descriptive statistics but also the use of

visualisations. Data can be visually represented with charts, graphs, and dashboards made

possible by programmes such as Google Data Studio. By assisting in the detection of

correlations and patterns among data, these visualisations enable analysts to make

well-informed judgements by drawing on new information.



Figure 4.1: Visualisation of Data in Google Looker Studio

Configurations that simultaneously take into account variables like cost, speed, and security

can be found through multi-objective optimization. Sensitivity analysis supports optimisation

efforts by illuminating how modifications to particular parameters or settings impact build

pipeline efficiency.

Apart from these methods and processes, additional factors can improve the study. In order to

determine qualitative aspects of build pipeline performance and user satisfaction, user data

and feedback are analysed. By weighing the trade-offs between various configurations in

terms of cost and performance gains, cost-benefit analysis offers guidance for making

decisions. To evaluate a configuration's vulnerability and find possible mitigations, security

vulnerability analysis entails simulating security attacks on various setups.

These methods, procedures, and systems offer a foundation for putting the automated build

pipeline paradigm into practice. The needs, architecture, and preferences of the private

network under consideration will determine which tools and technologies are best.



4.3 Main functions of models or frameworks

Within our study methodology, we highlight the following essential functions, models, and

frameworks to fulfil the research objectives: evaluating the impact of ABP testing on

construction performance; and optimising ABP configurations for increased efficiency and

security.

Simulation model: The main instrument for carrying out controlled tests and producing data

on the interaction between ABP configurations and construction performance metrics is the

customised simulation model, which combines agent-based, Monte Carlo, and discrete event

simulation approaches.

Data visualisation and analysis: With interactive dashboards, line graphs, bar charts, scatter

plots, and heatmaps, Google Looker Studio facilitates the investigation and dissemination of

insights from the simulated data.

Error generation was added to the simulated data process in order to assess how reliable ABP

configurations are. This module presents plausible faults and malfunctions, enabling

evaluation of the effects these mistakes have on the system. To assess the effectiveness of

different security measures inside ABP settings and provide insights into potential

weaknesses and areas for improvement, a module for simulating security vulnerabilities was

also introduced. This guarantees accurate outcomes and aids in locating any bottlenecks that

can impede the automated procedure.

Finding the best ABP configurations is made possible by model experimentation, correlation

analysis, and data visualisation. These methods help find ABP configurations that optimise

productivity, reduce mistake rates, and provide strong security.

The primary purpose of the suggested model is to provide a variety of realistic build pipeline

scenarios that illustrate the potential effectiveness of the installed ABP. It enables the

investigation of actual situations in various combinations. It enables the depiction of trends or

patterns via charts, for example. Additionally, the model enables evaluation of other

characteristics or settings that could impact the ABP..



Through the strategic application of these tools and approaches, the research seeks to

optimise ABP testing and building processes in order to produce actionable insights that

improve project outcomes.

4.4 Chapter Summary

This chapter explores the models, simulations, and implementation techniques used for the

proposed model, which form the basis of the research. It starts by outlining the selected

models and how they relate to the goals of the project, emphasising how well-suited they are

for assessing and enhancing build performance. Following that, the chapter delves further

into the particular methods, techniques and workings of these models. The chapter then turns

its attention to the fundamental features of the created models or frameworks. It describes the

models' operation, the aspects of build performance they affect, and how they help the project

reach its objectives. It concludes with a brief overview of the models selected and their

relevance, as well as a brief summary of the mechanisms and approaches used.



CHAPTER 5 - RESULTS AND DISCUSSIONS

5.1 Results Presentation

The data was organised and collected in Google Sheets, and then it was connected to Google

Looker Studio for additional analysis and visualisation. A number of charts were produced,

with the creation of scatter charts being the primary focus at first.

The scatter plots in figure 5.1 offered insightful information on the correlations between

various parameters, especially with regard to the cost per build

Figure 5.1: Relationship Analysis: Cost per Build and Operational Metrics



Positive correlations typically indicate that when one variable rises, the other variable is also

likely to rise. This implies a clear connection between the variables. Conversely, a low or

nonexistent correlation suggests that the variables have little to no association with one

another. From figure 5.1, we can derive:

● Given the positive association between time and cost per build, it may be inferred that

build times tend to increase along with build costs. This suggests that longer build

timeframes could necessitate inefficiency or the need for more resources.

● Changes in latency do not appear to have a major effect on the cost per construction,

as seen by the lack of a clear trend or link between latency and cost per build. This

implies that changes in latency could not have a direct impact on the build process'

total cost.

● Higher resource utilisation usually translates into higher build costs, according to the

positive association found between resource utilisation and cost per build. This may

suggest that reducing the cost per build can be achieved by assigning more resources

or by employing resources more effectively.

● It appears that changes in failure rate have no effect on cost per construction because

there is no pattern or link between failure rate and cost per build. This suggests that

build-related errors might not have a direct impact on the final cost.



Figure 5.2: Relationship Analysis: Failure Rate and Operational Metrics

Figure 5.2 above shows line graphs with various operational metrics plotted against the

failure rate. Based on these graphs, we can derive:

● The first graph looks at the connection between failure rate and latency (measured in

seconds). It clearly displays a declining trend, meaning that the failure rate falls as

delay rises. With a 20-second latency at the beginning of the graph, the failure rate is



approximately 5%. On the other hand, the failure rate falls to little over 1% as the

latency rises to 25 seconds. This implies that a lower failure rate is caused by longer

latency times.

● The second graph shows the correlation between the failure rate and the cost per build

(in USD). It shows a downward tendency as well, much like the first graph. Failure

rate drops in tandem with decreasing cost each build. For a build cost of one USD, the

first data point indicates a failure rate of roughly 5%. But the failure rate falls below

1% when the cost per build drops to 0.65 USD. This implies that a lower failure rate

is linked to lower costs per build.

● The third graph, which looks at the connection between the quantity of security

incidents and the failure rate, is next. This graph shows a sharp downward trend,

meaning that the failure rate sharply drops as the number of security events rises.

When there are no security events at the beginning of the graph, the failure rate is

somewhat less than 12%. Nevertheless, the failure rate drops to 0% when there are

two security incidents. This implies that a significant drop in the failure rate may

result from a greater attention on security issues.

● The fourth graph investigates the connection between the failure rate and resource

utilisation (shown as a percentage). Similar to the earlier graphs, this one shows a

declining trend. There is a decrease in both the failure rate and resource utilisation.

With a resource utilisation of 45% at the start of the graph, the failure rate is

marginally less than 5%. On the other hand, the failure rate falls to little over 1% as

the resource utilisation falls to 34%. This suggests that maximising the use of

available resources can result in a decreased failure rate.

● The graphs demonstrate that failure rate drops in tandem with decreases in latency,

cost per build, security events, and resource utilisation. These results emphasise how

crucial it is to optimise these factors in order to reduce the likelihood of failures.

Furthermore, the failure rate decreases most noticeably when security incidents rise,

according to the graph showing security incidents vs. failure rate.

5.2 Analysis of Results

Even though our build performance data at first glance showed some intriguing correlations,

further investigation is needed to get useful information for cost optimisation.



Let us examine the results of figure 5.1 in order to gain a more thorough grasp:

● The fact that time and cost per build are positively correlated implies that higher

expenses could be the outcome of longer build timeframes. It would help to

investigate this link further by finding the ideal time frame for cost reduction without

sacrificing the effectiveness or quality of the building process.

● It appears that variations in latency have no effect on the cost per construction

because there is no discernible pattern or link between latency and cost per build.

● It is implied that greater resource utilisation results in higher costs by the positive link

between resource utilisation and cost per build. This research implies that in order to

reduce expenses while preserving appropriate levels of resource utilisation, careful

resource management and optimisation techniques are required.

● It appears that changes in failure rate have no effect on cost per construction because

there is no pattern or link between failure rate and cost per build. This research

suggests that higher expenses might not always be directly caused by build process

errors.

Based on the results obtained from figure 5.2, these are the results we can reach:

● The research indicates that, in the context of the data under consideration, a number of

factors may have an impact on the failure rate based on the aforementioned results.

The failure rate on the y-axis and the variables on the x-axis show a constant negative

association, as seen in the line graphs.

● The failure rate falls with increasing latency, according to the study of the latency vs.

failure rate graph. This suggests that greater latency durations for systems or

processes are associated with a reduced failure rate. It can be deduced that giving

oneself enough time to process or respond lowers the probability of errors.

● The failure rate likewise falls as the cost per build does, according to the link between

the two variables. This shows that a reduced failure rate may be achieved by

optimising expenses and resource allocation during the build phase. It suggests that

fewer failures are linked to projects that are more economical and successful.

● There is a strong correlation, according to the failure rate graph and security incident

analysis. The failure rate falls as the number of security incidents rises. This result

implies that a reduced failure rate is a result of a greater emphasis on security issues.



It suggests that strong security protocols and incident handling can successfully

reduce malfunctions

● Finally, the resource utilisation vs. failure rate study shows that a decrease in resource

utilisation is accompanied with a decrease in the failure rate. This implies that

maximising the use of available resources may result in a decreased failure rate. It

suggests that minimising failures requires effective resource allocation and

management.

● All things considered, the analysis emphasises how important different factors are in

determining the failure rate. It implies that reducing failure rates can be achieved by

optimising resource usage, security incidents, latency, and cost per build. These

results shed light on possible areas where systems or procedures should be

strengthened in order to lower failure rates and increase overall performance.

5.3 Comparison to Related Work

Research gaps are filled in a number of areas, including cost effectiveness, handling merging

conflicts, semantic versioning, handling failed builds, automated build from git provider, and

private network applicability, as mentioned in table 2.1

The analysis emphasises the connection between failure rates and cost per build in terms of

cost effectiveness. It highlights the significance of optimising build costs for better

performance by showing that a lower cost per build is linked to a lower failure rate.

It also shed light on cost-effective methods that reduce failures by examining the connection

between cost per build and failure rates. But the study doesn't concentrate on identifying the

underlying reasons behind unsuccessful builds and creating workarounds for them. This

might be useful in determining how to handle builds that fail.

(Garg and Garg, 2019), is an example of how it does not provide a very cost effective

approach. It uses Gitlab which takes up to $50 per month. Furthermore, the personnel require

their own fees too. With the proposed model, if implemented as a package, would simply

require connecting the package, and following instructions as per the package guidelines. The

costs incurred would be for cloud hosting and git minutes on github.

https://www.zotero.org/google-docs/?xyqSSH


5.4 Implications of Results

In this section, a summary of the consequences of the findings based on the previous analysis

will be carried out.

Based on the analysis of figure 5.1, these are the implications:

● The fact that latency and cost per construction do not significantly correlate suggests

that changes in latency might not have an immediate effect on total costs. This implies

that enterprises might not have to concentrate their efforts on cutting latency only on

financial concerns.

● Greater resource utilisation typically translates into greater expenses, as seen by the

positive association found between resource utilisation and cost per build.

Organisations should concentrate on efficiently assigning and managing resources to

reduce waste and guarantee effective utilisation in order to optimise costs.

● There may not be a direct link between construction process failures and higher

expenses, as evidenced by the weak connection found between failure rate and cost

per build. This suggests that rather than focusing on cost reduction, organisations

should prioritise efforts to eliminate failures largely for reasons related to quality and

reliability.

● Overall, the data points to a direct correlation between cost reduction and build time

and resource optimisation. It is crucial to remember that these implications are

predicated on the examination of particular variables and may change based on the

circumstances and particulars of the build process.

The implications of the results from figure 5.2 are:

● The research identifies important factors that can be adjusted to enhance system

functionality and lower failure rates. Through the implementation of strategies such as

latency reduction, cost minimization per build, security incident handling, and

resource optimisation, enterprises can improve their overall efficiency and

performance.

● Organisations can prioritise and bolster their security procedures by comprehending

the connection between failure rates and security events. Organisations may reduce



risks and minimise failures by investing in strong security standards, incident

management systems, and proactive security practices.

● According to the data, lowering the cost of each build can result in a lower failure

rate. This conclusion suggests that in order to reduce failures while preserving

operational efficiency, organisations can adopt cost-effective techniques, optimise

their resource allocation, and streamline their operations.

● The investigation sheds light on the variables affecting failure rates. Systems and

procedures can be continuously monitored, analysed, and improved with the use of

this data. Through ongoing assessment and optimisation of latency, expenses, security

protocols, and resource allocation, establishments can pursue ongoing enhancement

and reduce failure frequencies.

● The outcomes provide insightful data to aid in decision-making. This study can help

organisations make well-informed decisions about budgeting, resource allocation,

system design, and security measures. Organisations can make better and more

efficient decisions if they align their choices with the objective of lowering failure

rates.

● Reduced failure rates could increase customer satisfaction. By optimising system

performance, decreasing downtime, and averting malfunctions, companies would be

able provide their clients a more dependable and fulfilling experience. Positive brand

perception and enhanced client loyalty may follow from this.

5.5 Chapter Summary

The first section of this chapter presents the major findings, demonstrating the findings. After

that, it explores deeply into the analysis of the findings, exposing the insights and hidden

patterns found in the data. Afterward, a comparison is made between the acquired results and

current research and industry standards. This uses the comparison made in table 2.1 earlier.

The chapter comes to a close with a discussion of the findings' wider ramifications. It

examines the possible advantages and uses of the results.



CHAPTER 6 - SUMMARY AND CONCLUSION

6.1 Summary of Main Findings

The results of the investigation show that while variations in latency may not directly affect

the final cost, reducing build time can result in cost savings. Costs often rise with higher

resource utilisation, and quality and dependability are largely benefited by lower failure rates.

Cost reduction can be immediately impacted by optimising build time and resource

utilisation, while more research and validation are advised for decision-making tailored to the

particular circumstance.

The correlations between many variables, including time, cost per build, delay, resource

utilisation, and failure rate, are illustrated in Figure 5.2. It comes to the conclusion that time

and cost per build are positively correlated, indicating that longer build periods can call for

more resources. Nevertheless, there is no discernible relationship between latency and cost

per build, suggesting that variations in latency would not have a big impact on the total cost.

Additionally, it observes a positive link between cost per build and resource utilisation,

suggesting that higher resource utilisation results in higher expenses. Failed builds, however,

do not appear to be correlated with cost per build, suggesting that the cost may not be directly

affected by build failures.

The graphs in figure 5.2 demonstrate how the failure rate falls in tandem with decreases in

latency, cost per build, security events, and resource utilisation. To reduce failures, it's critical

to optimise these variables. The failure rate significantly decreases as security incidents rise,

according to the security incidents graph. Additionally, it draws attention to a negative

association between the failure rate and factors like latency, cost per build, security issues,

and resource utilisation. It implies that a decreased failure rate can be attained by longer

latency periods, reduced build costs, increased focus on security incidents, and optimised

resource use. The results shed light on possible areas for development in order to lower

failure rates and improve system performance as a whole.

6.2 Attainment of Research Objectives

Chapters 1 and 2 both provided a thorough identification and analysis of the dangers and

problems related to the implementation of automated build pipelines in private networks. The



research offered a thorough understanding of the various roadblocks and vulnerabilities that

may occur during the implementation process through thorough analysis and a review of the

literature.

Using this foundation as a starting point, the research went on to create an extensive

framework/model for evaluating, organising, and carrying out the deployment of an

automated build pipeline made especially for private networks. In Chapter 2, the first

framework was carefully designed with the risks and challenges that were recognised in

mind. This framework functioned as a road map to direct the research's following

development and execution stages.

The research made use of Google Looker Studio and Sheets' features to make the framework

come to life. The automated build pipeline concept was developed and put into practice using

these platforms in a private network setting. The project sought to minimise delay in the build

pipeline process, handle semantic versioning properly, and gain operational efficiency by

utilising these technologies.

After the implementation stage, the research carefully examined and assessed the outcomes

derived from the created model. A thorough evaluation was carried out to ascertain the

degree to which the goals were achieved. This assessment covered a number of topics,

including the automated build pipeline's throughput, compliance with semantic versioning

guidelines, effectiveness in resolving merging disputes, and decrease in build failures.

By means of this thorough examination and assessment, the study aimed to determine

whether the research goals had been met. A definitive conclusion about the accomplishment

of the goals could be reached by closely examining the data, pointing out any gaps or limits,

and contrasting them with the intended results.

In conclusion, the study process includes a methodical approach to problem identification,

framework development, model implementation, and outcome evaluation. By going through

this procedure, the study sought to meet the stated goals and advance our understanding of

how to deploy automated build pipelines in private networks.



6.3 Contribution to the body of knowledge

The study's research has significantly added to our understanding of the subject of

automating build pipeline implementation on private networks. These are the principal

contributions:

The hazards and difficulties of deploying automated build pipelines in private networks were

noted and thoroughly examined in the study. The research adds to the body of knowledge by

elucidating the various traps and weaknesses that organisations could run into during the

implementation process and by offering a thorough comprehension of these barriers.

For the purpose of evaluating, organising, and carrying out the deployment of an automated

build pipeline designed especially for private networks, a framework or model was created.

For enterprises looking to implement automated build pipelines in their private network

settings, this framework is an invaluable tool. The created model offers recommendations and

best practices to guarantee operational effectiveness, manage semantic versioning skillfully,

and reduce build pipeline downtime.

The study illustrated how the automated build pipeline model could be developed and

implemented in private networks by using tools like Google Sheets and Google Looker

Studio in a realistic manner. The research advances the practical knowledge and

comprehension of deploying automated build pipelines utilising widely accessible platforms

by demonstrating the use of these tools.

The research evaluated the efficacy and performance of the automated build pipeline model

through a thorough examination and analysis. Through the assessment of factors including

build failure reduction, merging dispute resolution, semantic versioning adherence, and

operational efficiency, the study offers significant understanding of the effectiveness and

influence of the created model.

To sum up, this research study adds a great deal to the body of knowledge by defining

problems, creating a framework or model, demonstrating real-world application, assessing

findings, and offering helpful suggestions. Through tackling these facets, the study

contributes to the comprehension and expertise of deploying automated build pipelines in



private networks, aiding establishments in their endeavours to enhance operational

effectiveness and reduce build failures.

6.4 Challenges and Limitations faced

One of the challenges that arose during this research was the financial implications of using

specific tools and services, such Google Cloud Services or comparable platforms. These

cloud-based services frequently include usage or membership costs, which can put a strain on

finances. The size of the infrastructure, the particular features and functions needed, and even

the length of time can all affect how much these products and services cost. Moreover, costs

for continuing support and maintenance were taken into account. The total cost of adopting

and maintaining the automated build pipeline may be further impacted by extra costs for

upgrades, licensing, and technical support after the initial setup.

The compatibility and processing capacity constraints of my current computer equipment

presented another challenge when thinking through the project. My computer systems would

not work with the particular platforms or tools needed for the automated build pipeline, so

compatibility problems would occur. This involved problems like out-of-date software

versions, unsupported operating systems, or hardware constraints that hinder the pipeline's

constituent parts from performing as intended.

Moreover, another constraint was the inadequate processing capacity of my personal

computers. Significant processing power and memory are needed to handle huge codebases,

run resource-intensive build procedures, and execute several builds at once.

6.5 Future works

The following methods, procedures, and systems can be taken into consideration for putting

the automated build pipeline model for private networks into practice within the framework

of the project. Below is an outline of how the implementation of the system would work:

1.) Tools for Continuous Deployment and Integration (CI/CD): Build pipeline operations

can be automated by utilising a variety of CI/CD solutions. Code compilation, testing,

and deployment can be automated with well-known tools like Jenkins, GitLab CI/CD,



or Travis CI. A multitude of built-in methods and algorithms are usually available in

these programmes to help automate and optimise the build process.

2.) Version control systems, such as Git, are useful for tracking revisions, managing code

changes, and maintaining the integrity of the codebase. The utilisation of mechanisms

like branching, merging, and pull requests can promote developer collaboration and

guarantee a seamless and regulated integration process.

3.) Automated Testing Frameworks: The testing stage of the build process can be

automated with the use of automated testing frameworks like Selenium for web apps

and JUnit for Java. These frameworks offer tools and techniques for creating and

running automated tests, producing test reports, and identifying problems or

regressions in the source code.

4.) Containerisation: Applications can be containerised and their deployment can be

orchestrated with the help of technologies such as Docker and Kubernetes.

Applications and their dependencies can be packaged via containerisation, which

ensures consistency in various settings. Kubernetes orchestration technologies

facilitate effective containerised application scaling, load balancing, and management.

5.) Security Mechanisms: To safeguard private networks, security measures must be put

in place at every stage of the build process. To find and fix security flaws, methods

like vulnerability scanning, penetration testing, and code analysis tools (like

SonarQube) can be used. To safeguard data privacy and prevent unwanted access,

other measures include access control systems, secure communication protocols, and

encryption methods.

6.) Monitoring and Logging Mechanisms: By putting them in place, it will be easier to

keep track of the build pipeline's health and performance. Proactively identifying

problems and performance bottlenecks is made possible by the collection and analysis

of logs, metrics, and events using tools like Prometheus and the ELK (Elasticsearch,

Logstash, Kibana) stack.

6.6 Chapter Summary

The key findings are thoroughly summarised in this chapter. The chapter also provides a

critical assessment of the research's performance in meeting its original goals, emphasising

the degree to which the objectives were fulfilled and the advances made in the field of build

pipeline optimisation. The research's contribution to the body of current knowledge is then



addressed. It illustrates how the discoveries deepen our understanding of build pipeline

optimisation and may provide new avenues for research in the future. It also recognises the

difficulties and constraints that arose throughout the investigation. It ends with suggesting

directions for further research that could be motivated by the findings.



REFERENCES

Arachchi, S.A.I.B.S. and Perera, I. (2018) ‘Continuous Integration and Continuous Delivery
Pipeline Automation for Agile Software Project Management’, in 2018 Moratuwa
Engineering Research Conference (MERCon). 2018 Moratuwa Engineering Research
Conference (MERCon), pp. 156–161. Available at:
https://doi.org/10.1109/MERCon.2018.8421965.

Bello, Y. et al. (2022) ‘Continuous Integration and Continuous Delivery Framework for
SDS’, in 2022 IEEE Canadian Conference on Electrical and Computer Engineering
(CCECE). 2022 IEEE Canadian Conference on Electrical and Computer Engineering
(CCECE), pp. 406–410. Available at: https://doi.org/10.1109/CCECE49351.2022.9918437.

de Bruin, B. and Floridi, L. (2017) ‘The Ethics of Cloud Computing’, Science and
Engineering Ethics, 23(1), pp. 21–39. Available at:
https://doi.org/10.1007/s11948-016-9759-0.

Debroy, V. and Miller, S. (2020) ‘Overcoming Challenges With Continuous Integration and
Deployment Pipelines: An Experience Report From a Small Company’, IEEE Software,
37(3), pp. 21–29. Available at: https://doi.org/10.1109/MS.2019.2947004.

Dwivedi, Y.S., Semalty, G. and Moondra, A. (2021) ‘Predictive Technique To Improve
Classification On Continuous System Deployment’, in 2021 IEEE International Conference
on Electronics, Computing and Communication Technologies (CONECCT). 2021 IEEE
International Conference on Electronics, Computing and Communication Technologies
(CONECCT), pp. 1–4. Available at: https://doi.org/10.1109/CONECCT52877.2021.9622682.

Elazhary, O. et al. (2022) ‘Uncovering the Benefits and Challenges of Continuous Integration
Practices’, IEEE Transactions on Software Engineering, 48(7), pp. 2570–2583. Available at:
https://doi.org/10.1109/TSE.2021.3064953.

Gallaba, K. (2019) ‘Improving the Robustness and Efficiency of Continuous Integration and
Deployment’, in 2019 IEEE International Conference on Software Maintenance and
Evolution (ICSME). 2019 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pp. 619–623. Available at: https://doi.org/10.1109/ICSME.2019.00099.

Garg, Somya and Garg, Satvik (2019) ‘Automated Cloud Infrastructure, Continuous
Integration and Continuous Delivery using Docker with Robust Container Security’, in 2019
IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). 2019 IEEE
Conference on Multimedia Information Processing and Retrieval (MIPR), pp. 467–470.
Available at: https://doi.org/10.1109/MIPR.2019.00094.

https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://doi.org/10.1109/MERCon.2018.8421965
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://doi.org/10.1109/CCECE49351.2022.9918437
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://doi.org/10.1007/s11948-016-9759-0
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://doi.org/10.1109/MS.2019.2947004
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://doi.org/10.1109/CONECCT52877.2021.9622682
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://doi.org/10.1109/TSE.2021.3064953
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://doi.org/10.1109/ICSME.2019.00099
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://doi.org/10.1109/MIPR.2019.00094
https://www.zotero.org/google-docs/?8Ny19K


Hung, P.D. and Giang, D.T. (2019) ‘Continuous Integration for Android Application
Development and Training’, in Proceedings of the 3rd International Conference on
Education and Multimedia Technology. New York, NY, USA: Association for Computing
Machinery (ICEMT ’19), pp. 145–149. Available at:
https://doi.org/10.1145/3345120.3345158.

Jin, X. and Servant, F. (2020) ‘A cost-efficient approach to building in continuous
integration’, in Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering. New York, NY, USA: Association for Computing Machinery (ICSE ’20), pp.
13–25. Available at: https://doi.org/10.1145/3377811.3380437.

Kessel, M. and Atkinson, C. (2018) ‘Integrating Reuse into the Rapid, Continuous Software
Engineering Cycle through Test-Driven Search’, in 2018 IEEE/ACM 4th International
Workshop on Rapid Continuous Software Engineering (RCoSE). 2018 IEEE/ACM 4th
International Workshop on Rapid Continuous Software Engineering (RCoSE), pp. 8–11.
Available at: https://ieeexplore.ieee.org/document/8452100.

Koopman, M. (2019) A framework for detecting and preventing security vulnerabilities in
continuous integration/continuous delivery pipelines. University of Twente. Available at:
http://essay.utwente.nl/78048/

Lunde, B.A. and Colomo-Palacios, R. (2020) ‘Continuous practices and technical debt: a
systematic literature review’, in 2020 20th International Conference on Computational
Science and Its Applications (ICCSA). 2020 20th International Conference on Computational
Science and Its Applications (ICCSA), pp. 40–44. Available at:
https://doi.org/10.1109/ICCSA50381.2020.00018.

Mysari, S. and Bejgam, V. (2020) ‘Continuous Integration and Continuous Deployment
Pipeline Automation Using Jenkins Ansible’, in 2020 International Conference on Emerging
Trends in Information Technology and Engineering (ic-ETITE). 2020 International
Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), pp.
1–4. Available at: https://doi.org/10.1109/ic-ETITE47903.2020.239.

Pinto, G. et al. (2018) ‘Work practices and challenges in continuous integration: A survey
with Travis CI users’, Software: Practice and Experience, 48(12), pp. 2223–2236. Available
at: https://doi.org/10.1002/spe.2637.

Railić, N. and Savić, M. (2021) ‘Architecting Continuous Integration and Continuous
Deployment for Microservice Architecture’, in 2021 20th International Symposium
INFOTEH-JAHORINA (INFOTEH). 2021 20th International Symposium
INFOTEH-JAHORINA (INFOTEH), pp. 1–5. Available at:
https://doi.org/10.1109/INFOTEH51037.2021.9400696.

https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://doi.org/10.1145/3345120.3345158
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://doi.org/10.1145/3377811.3380437
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://ieeexplore.ieee.org/document/8452100
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
http://essay.utwente.nl/78048/
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://doi.org/10.1109/ICCSA50381.2020.00018
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://doi.org/10.1109/ic-ETITE47903.2020.239
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://doi.org/10.1002/spe.2637
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://doi.org/10.1109/INFOTEH51037.2021.9400696
https://www.zotero.org/google-docs/?8Ny19K


Riti, P. (2018) Pro DevOps with Google Cloud Platform With Docker, Jenkins, and
Kubernetes. 1st ed. 2018. Berkeley, CA: Apress. Available at:
https://doi.org/10.1007/978-1-4842-3897-4.

Rubert, M. and Farias, K. (2022) ‘On the effects of continuous delivery on code quality: A
case study in industry’, Computer Standards & Interfaces, 81, p. 103588. Available at:
https://doi.org/10.1016/j.csi.2021.103588.

Shahin, M., Ali Babar, M. and Zhu, L. (2017) ‘Continuous Integration, Delivery and
Deployment: A Systematic Review on Approaches, Tools, Challenges and Practices’, IEEE
Access, PP. Available at: https://doi.org/10.1109/ACCESS.2017.2685629.

Soares, E. et al. (2022) ‘The effects of continuous integration on software development: a
systematic literature review’, Empirical Software Engineering, 27(3), p. 78. Available at:
https://doi.org/10.1007/s10664-021-10114-1.

Steffens, A., Lichter, H. and Döring, J.S. (2018) ‘Designing a Next-Generation Continuous
Software Delivery System: Concepts and Architecture’, in 2018 IEEE/ACM 4th International
Workshop on Rapid Continuous Software Engineering (RCoSE). 2018 IEEE/ACM 4th
International Workshop on Rapid Continuous Software Engineering (RCoSE), pp. 1–7.
Available at: https://ieeexplore.ieee.org/document/8452099

Zampetti, F. et al. (2020) ‘An empirical characterization of bad practices in continuous
integration’, Empirical Software Engineering, 25(2), pp. 1095–1135. Available at:
https://doi.org/10.1007/s10664-019-09785-8.

https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://doi.org/10.1007/978-1-4842-3897-4
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://doi.org/10.1016/j.csi.2021.103588
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://doi.org/10.1109/ACCESS.2017.2685629
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://doi.org/10.1007/s10664-021-10114-1
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://ieeexplore.ieee.org/document/8452099
https://www.zotero.org/google-docs/?8Ny19K
https://www.zotero.org/google-docs/?8Ny19K
https://doi.org/10.1007/s10664-019-09785-8
https://www.zotero.org/google-docs/?8Ny19K

