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Abstract 
In this paper, we compare equilibrium equity premium under discrete distributions of jump 
amplitudes. In particular, we consider the binomial and gamma distributions because of their 
applicability in finance. For the binomial, we assume that the price movement is allowed to either 
increase or decrease with probability p or 1 − p respectively. n is the trading period thereby 
forming a vector x of jump sizes (shifts) whose distribution is a binomial over time. For the gamma, 
the jumps are taken to be rare events following a Poisson distribution whose waiting times 
between them follows a gamma. In both distributions, the optimal consumption of the investor is 
affected by the deterministic time preference function ( )y t  but it has no effect on the diffusive 
and rare-events premia thereby not affecting the equilibrium equity premium. Also, for n k, 0= , 
the volatility effect on the equity premium is the same in both the power and square root utility 
functions although the equity premium is not affected by the wealth process ( )V t . However, the 
wealth process affects the equity premium of the quadratic utility fuction. We observe no significant 
differences in equity premium for the two discrete distributions. 
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1. Introduction 
The equity risk premium or simply equity premium, the rate by which risky stocks are expected to outperform 
safe fixed-income investments, such as government bonds and bills, is perhaps the most important index in 
finance. This is the investor’s compensation for taking on the relatively higher risk of the equity market. The 
equity risk premium is found by subtracting the estimated bond return from the estimated stock return. In our 
early work, we had considered the impact of utility functions in the production economy with jumps under an 
arbitrary jump size and derived analytical formulae for an equity premium for the power, exponential, square 
root and quadratic utility functions. However, we were unable to simulate graphs because of the jump size being 
arbitrary. In this paper, we derive numerical formulae for an equity premium and simulate graphs by imposing a 
Binomial distribution on the jump sizes. We then compare the results with those obtained by simulating the 
Gamma distribution of Jump Amplitudes. Jump diffusion has been widely explored in the area of option pricing 
but little work has been done to ascertain the behaviour of equity premium under jump diffusion models. 

[1]-[4] studied the Pricing of Options under Jump-Diffusion Processes, and derived the appropriate characteri- 
zation of asset market equilibrium when asset prices follow jump-diffusion process. They developed the general 
methodology for pricing options on such assets. By imposing specific restrictions on distributions and pre- 
ferences, [2] formulated a tractable option pricing model that is valid even when jump risk is systematic and 
non-diversifiable. The dynamic hedging strategies justifying the option pricing model were described and 
comparisons were made throughout to the analogous problem of pricing options under stochastic volatility. 

Jump Diffusion Option Valuation in Discrete Time was proposed by [5] and later developed by [6]-[16]. 
Multivariate jumps were superimposed on the binomial model of [17] to obtain a model with a limiting jump 
diffusion process. The model proposed by [5] incorporated the early exercise feature of American options as 
well as arbitrary jump distributions. The model yielded an efficient computational procedure that can be imple- 
mented in practice. To illustrate the model, [5] applied it to characterize the early exercise boundary of Ameri- 
can options with certain types of jump distributions. 

This paper is related to a number of papers including [11] [18]-[24] solved for the equity premium in an 
economy with a robust agent that has recursive utility. 

2. The Model  
This paper is based on theoretical model of [14] and also further elaboration by [25] and [26]. Consider a Jump 
Diffusion process;  

( ) ( )d d d e 1 d e 1 d .x xt
t t

t

X t B N t
X

µ δ λ
−

= + + − − −E  

The gamma distribution arises naturally when we consider waiting times between Poisson distributed events 
as relevant. It can be thought of as a waiting time between Poisson distributed events. 

The probability density function is the waiting time until the thk  Poisson event with a rate of change λ . 
This is given by 

( ) ( )
( )

1

e .
1 !

k
xx

x
k

λλ λ −
−=

−
P  

Now, for ( )~ ,x G k θ  where 1θ
λ

= , the gamma probability density function is 

( )
1e

x
k

k
x

k

θ

θ

−
−
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where x is a vector of jump amplitudes, k is the number of occurrences of an event and ( )2.71828 .e =   In our 
case, k is the number of times we observe the jumps. We realise that if k is a positive integer, ( ) ( )1 !k kΓ = −  is  

the gamma function. The value 1θ
λ

=  is the mean number of jumps per time unit and λ  is the mean time  

between jumps. 



G. M. Mukupa et al. 
 

 
234 

We still subtract the expected value from the drift so that the process becomes more volatile and hence a 
martingale because its future is unexpected. If we apply Itô Lemma with Jumps we have,  

( ) 21d ln e 1 d d d .
2

x
t t tX t B x Nµ λ δ δ  = − − − + +   

E  

By integration we have  

( ) 2

1

1ln e 1 , for
2

N
xT

t i
it

X Y B x T t
X

τ

τ µ λ δ τ δ τ
=

 ≡ = − − − + + = −  
∑E  

where Yτ  is the continuously compounded investment return over the period from time t to T and τ  is the 
investment period. 

Suppose also that, at the risk-free rate ρ , the money market account ( )0X t  is such that  

( ) ( ) ( )0 0d dX t t X t tρ=  

whose total supply is assumed to be zero. Consider here that ρ  is risk-free because it is the rate for the money 
account. 

We study comparatively the general equilibriums of one investor who wishes to maximize his expected 
reward function  

( ) ( )max d ,
T

t tt
y t U r t∫E  

subject to  

( ) ( )d e 1 d d e 1 dx xt t
t t

t t

V r t B N
V V

ρ ωφ ωλ ωδ ω
 

= + − − − + + − 
 

E  

in an economy with jumps when jump amplitudes follow the binomial and gamma distributions for some time 
preference function ( )y t . 

3. Results and Discussion  
Theorem 1. If X is a vector of binomially distributed jump sizes, an investor’s equilibrium equity premium with  

CRRA power utility function ( ) , 0 1,t
t

rU r
β

β
β

= < <  in the production economy with jump diffusion is given by  

( ) ( )( ) ( ) ( )2 11 1 e 1 1 e 1 e
n nn

p p p p pβ βφ β δ λ λ λ λ −= − − + + − − − + − + − +  

where ( ) 21δφ β δ= − −  is the diffusive risk premium and  

( )( ) ( ) ( )11 e 1 1 e 1 e
n nn

N p p p p pβ βφ λ λ λ λ −= + − − − + − + − +  is the rare-event premium. 
Proof. If X is a random variable with a binomial distribution, then eXY =  is a logbinomial random variable. 
In particular, if ( )~ ,X B n p  and eXY =  then e .k kXY =  Also ( )ekX

Xm k  = E  where ( )Xm k  is the 
moment-generating function of X evaluated at k. Hence 

( )e 1 e
nkX kp p  = − + E  

and so 

( ) ( )( ) ( )e 1 e 1 e 1 1 .
nnX

Xp p p m  = − + = + − = E  

Let X x=  be a vector of binomially distributed jump sizes then for the power utility function of [25], the  

rare-event premium ( ) ( )( )1
e 1 1 ex x

N E
β

φ λ
− = − −  

 which is ( ) ( )1 1e e 1 ex x xx
N E β βφ λ + − − = − − +  . 

Now  
( ) ( ) ( ) ( )1 1 1e e e 1 e .

nx x x x
Xp p mβ β β β β+ − + −     = = = − + =    E E E  
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( ) ( ) ( )1 1e 1 e 1 .
nx

Xp p mβ β β− −  = − + = − E  

Therefore, our rare-event premium 

( ) ( )( ) ( )( )1 1e e 1 ex x xx
N

β βφ λ + − − = − − + E E E  now becomes  

( )( ) ( ) ( )11 e 1 1 e 1 1 e
n nn

N p p p p pβ βφ λ − = + − − − + − + − +  
 which implies that our equity premium is now 

( ) ( )( ) ( ) ( )2 11 1 e 1 1 e 1 e .
n nn

p p p p pβ βφ β δ λ λ λ λ −= − − + + − − − + − + − +                            □ 

The optimal consumption of the investor is affected by the deterministic time preference function ( )y t    
but it has no effect on the diffusive and rare-events premia. In addition, the price of the diffusive risk 

( ) 21δφ β δ= − −  is always positive for 0 1β< <  and  

( )( ) ( ) ( )11 1 1 e 1 e
n nn

N e p p p p pβ βφ λ λ λ λ −= + − − − + − + − +  is the price of the jump risk. 

As can be seen in Figure 1, for 0,n =  the equity premium is almost zero when volatility is zero. This is 
consistent with the result for normally distributed jump sizes. Also Figure 2 shows that, as β  approach zero 
from the right, the equity premium increases significantly and vice-versa. 

Theorem 2. For a gamma distribution of jump sizes, an investor’s equilibrium equity premium with CRRA  

power utility function ( ) , 0 1,t
t

rU r
β

β
β

= < <  in the production economy with jump diffusion is given by 

( )
( )

21
1 11 1 1

k k k
λ λ λφ β δ λ

β β
λ λ λ

= − − + − − +
−     − − −          

 

where ( ) 21δφ β δ= − −  is the diffusive risk premium and 
( )1 11 1 1

N k k k
λ λ λφ λ

β β
λ λ λ

= − − +
−     − − −          

 is  

the rare-event premium. 
 

 
Figure 1. Power utility volatility effect under binomial distribution.                                  
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Figure 2. Power utility beta effect under binomial distribution.                                       

 
Proof. If x follows a gamma distribution, that is ( )~ ,x G kλ  then exY =  is a log-gamma random variable 

with parameter  
1e

1

u ux
kY

u
λ

   = =     − 
 

E E  

for some constant u. This is just the moment generating function of x evaluated at u.  
For the power utility function, the equilibrium equity premium φ  was given by  

( ) ( ) ( )( ) [ ] ( )1 121 e e 1 ex x xx β βφ β δ λ + − −  = − − + − − +   E E E E  

where our rare-event premium  

( ) ( )( ) [ ] ( )1 1e e 1 ex x xx
N

β βφ λ + − −  = − − +   E E E E  

[25]. 
Now since ( )~ ,x G kλ ,  

( ) ( )1e 1 .
11

x
xk M

λ

= =
 − 
 

E  
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1
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β
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Therefore our rare-event premium Nφ  now becomes 

( )1 11 1 1
N k k k

λ λ λφ λ
β β

λ λ λ

= − − +
−     − − −          

 

which implies that our equilibrium equity premium is  

( )
( )

21 .
1 11 1 1

k k k
λ λ λφ β δ λ

β β
λ λ λ

= − − + − − +
−     − − −          

                   □ 

The optimal consumption of the investor is affected by the deterministic time preference function ( )y t  but 
it has no effect on the diffusive and rare-events premia. In addition, the price of the diffusive risk  

( ) 21δφ β δ= − −  is always positive for 0 1β< <  and 
( )1 11 1 1

N k k k
λ λ λφ λ

β β
λ λ λ

= − − +
−     − − −          

 is the  

price of the jump risk. 
We realize in Figure 3 and Figure 4 that, for 0k n= = , the equity premium is almost zero when the 

volatility is zero and the effect of beta is also the same as in the Binomial distribution respectively. 
Theorem 3. In the production economy with jump diffusion under a vector of binomially distributed jump 

sizes, the investor’s equilibrium equity premium with square root utility function ( ) , 0,t t tU r r r= >  is given 
by 

( )( )
1 1

2 2 21 1 e 1 1 e 1 e
2

n n
n

p p p p pφ δ λ λ λ λ
−   

= + + − − − + − + − +      
   

 

 

 
Figure 3. Power utility volatility effect under gamma distribution.                                       
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Figure 4. Power utility beta effect under gamma distribution.                                       

 

where 21
2δφ δ=  is the diffusive risk premium and  

( )( )
1 1
2 21 e 1 1 e 1 e

n n
n

N p p p p pφ λ λ λ λ
−   

= + − − − + − + − +      
   

 is the rare-event premium.  

Proof. For the square root utility function, the rare-event premium is given by  

( )

( ) ( )

1 1 1
2 2 2

1 1
2 2

e 1 1 e e e 1 e

e e 1 e .

x x xx x
N

x xx

φ λ λ

λ

− −

−

    
= − − = − − +          

    
= − − +            

E E

E E E E

 

Since ( )~ , ,x B n p  we have that  

( ) ( )( ) ( )e 1 e 1 e 1 1
nnX

Xp p p m  = − + = + − = E  

and  

1 1
2 2 1e 1 e .

2

n
X

Xp p m
     = − + =          

E  

Also  

1 1
2 2 1e 1 e .

2

n
X

Xp p m
− −     = − + = −          

E  

Thus our rare-event premium is  
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( )( )
1 1
2 21 e 1 1 e 1 1 e

n n
n

p p p p pλ
−    

 + − − − + − + − +           
 

and therefore our equity premium is  

( )( )
1 1

2 2 21 1 e 1 1 e 1 e .
2

n n
n

p p p p pφ δ λ λ λ λ
−   

= + + − − − + − + − +      
   

                □ 

The equity premium is neither affected by the wealth value nor the time preference function and the diffusive 
risk premium is always positive. 

Just as for the power utility function and normally distributed jump size, Figure 5 suggest that, for 0n = , the 
equity premium is almost zero when volatility is zero and fluctuates about a constant value when 55n = . 

Theorem 4. In the production economy with jump diffusion under a vector x of jump sizes whose distribution 
follows a gamma, the investor’s equilibrium equity premium with square root utility function ( ) , 0,t t tU r r r= >  
is given by 

( )
21

2 1 0.5 0.51 1 1
k k k

λ λ λφ δ λ

λ λ λ

= + − − +
−     − − −          

 

where 21
2δφ δ=  is the diffusive risk premium and 

( )1 0.5 0.51 1 1
N k k k

λ λ λφ λ

λ λ λ

= − − +
−     − − −          

 is the  

rare-event premium.  
Proof. For the square root utility function, the rare-event premium is given by  

( )

( ) ( )

1 1 1
2 2 2

1 1
2 2

e 1 1 e e e 1 e

e e 1 e .

x x xx x
N

x xx

φ λ λ

λ

− −

−

    
= − − = − − +          

    
= − − +            

E E

E E E E

 

 

 
Figure 5. Square root utility volatility effect under binomial distribution.                    
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Now, since ( )~ ,x G kλ , 

( ) ( )1e 1
11

x
xk M

λ

= =
 − 
 

E  

( )
1
2 1e 0.5

0.51

x

xk M

λ

 
= =      − 
 

E  

( )
( )

1
2 1e 0.5

0.5
1

x

xk M

λ

− 
= = −   −   − 
 

E  

therefore 

( )1 0.5 0.51 1 1
N k k k

λ λ λφ λ

λ λ λ

= − − +
−     − − −          

 

and thus our equilibrium equity premium is 

( )
21 .

2 1 0.5 0.51 1 1
k k k

λ λ λφ δ λ

λ λ λ

= + − − +
−     − − −          

                      □ 

The equity premium is neither affected by the wealth value nor the time preference function and the diffusive 
risk premium is always positive. For 0k = , when volatility is zero, equity premium is zero. For 55k = , it 
decreases significantly as volatility approaches zero from either side (see Figure 6). This was the case also for 
the power utility function. 

Theorem 5. For the binomially distributed jump sizes, the investor’s equilibrium equity premium with 
quadratic utility function ( ) 2 , 0t t tU r r ar a= − >  in the production economy with jump diffusion is given by  

 

 
Figure 6. Square root utility volatility effect under gamma distribution.                                       
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( )( ) ( )( ) ( )

( )( )

22 2 1 e1 e 12 1 e 1
1 2 1 2 1 2

2 1 e 1
1 2 1 2
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n tt

t t t
n

t

t t

a V p ppaV p
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a V p
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λλλ

− ++ −
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− − −
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− + −

− −

 

where 
22

1 2
t

t

aV
aVδ
δφ =

−
 is the diffusive risk premium and  

( )( ) ( )( ) ( ) ( )( )22 1 e1 e 1 2 1 e 1
1 e 1

1 2 1 2 1 2 1 2

nn n
n t t

N
t t t t

a V p pp a V p
p

aV aV aV aV
λλ λλφ λ λ

− ++ − + −
= + − − + − + −

− − − −
 is the  

rare-event premium.  
Proof. For the HARA Quadratic utility function,  

( ) ( )2 1 2 e2
= e 1 1

1 2 1 2

x
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aVaV
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φ λ
  −
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E  

where  

( ) ( )

( ) ( ) ( ) ( )
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1 2 e
e 1 1

1 2

e 2 e 2 e1e 1
1 2 1 2 1 2

2 e 2 ee 1e 1
1 2 1 2 1 2 1 2

e 2 e 2 e1e 1
1 2 1 2 1 2 1 2

x
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N
t

x x x
x t t

t t t

x xx
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t t t t

x x x
t tx

t t t

aV
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aV aV
aV aV aV

aV aV
aV aV aV aV

aV aV

aV aV aV

φ λ

λ

λ

λ

  −
  = − −
  −  
 −

= − − + − − − − 
 

= − + − + − − − − − 

= − + − + −
− − − −

E

E

E

E E E
E .

taV

 
 
  

 

Now since ( )~ ,x B n p , we have that 

( ) ( )( ) ( )e 1 e 1 e 1 1
nnX

Xp p p m  = − + = + − = E  

and  

( ) ( )2 2e 1 e 2
nX

Xp p m  = − + = E  

thus our rare-event premium is  

( )( ) ( )( ) ( ) ( )( )22 1 e1 e 1 2 1 e 111 e 1 1
1 2 1 2 1 2 1 2

nn n
n t t

t t t t

aV p pp aV p
p

aV aV aV aV
λ
 − ++ − + − + − − + − + −
 − − − −
 

 

which implies that our equity premium is 

( )( ) ( )( ) ( )

( )( )

22 2 1 e1 e 12 1 e 1
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               □ 

It is not affected by the time preference function ( )y t  but is affected by ( )V t , the total wealth of the 
investor at any time t. Figure 7 shows a constant equity premium regardless of how volatile the process 
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becomes. In terms of wealth value, the equity premium is zero whenever the wealth process is zero as shown in 
Figure 8. This result is consistent with the normal distribution of jump sizes and maybe attributed to the fact 
that, for a large sample size, a discrete process maybe used to approximate a continuous process. 

Theorem 6. For the gamma distribution of jump sizes, the investor’s equilibrium equity premium with 
quadratic utility function ( ) 2 , 0t t tU r r ar a= − >  in the production economy with jump diffusion is given by 

 

 
Figure 7. Quadratic utility volatility effect under binomial distribution.                                       

 

 
Figure 8. Quadratic utility wealth effect under binomial distribution.                                       
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premium.  
Proof. For the HARA Quadratic utility function,  
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which is just  
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So that our equilibrium equity premium is now  
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                □ 

It is not affected by the time preference function ( )y t  but is affected by ( )V t , the total wealth of the 
investor at any time t. As evident in Figure 9, although for 0k =  the equity premium is negative, it rises 
significantly as the wealth value process moves from negative to zero and becomes zero when the wealth 
process is zero. The equity premium decreases significantly when the investor’s wealth is in the range 0 to 20 
and begins to rise again. For 55k = , the wealth process tV  affects the equity premium in the same way. 

4. Conclusions  
In conclusion, the optimal consumption of the investor is affected by the deterministic time preference function 
( )y t  but it has no effect on the diffusive and rare-events premia. For 0k = , the equity premium is almost zero 

when the volatility is zero. However, it is non zero for 55k =  even if it is symmetrical about zero premium. In 
fact, it decreases significantly as volatility approaches zero from either side. The equity premium for the 
quadratic utility function is affected by tV  the total wealth of an investor at time t. When 0tV = , the equity 
premium is zero. However, for 55k = , it is constant regardless of how volatile the process becomes. 
 

 
Figure 9. Quadratic utility wealth effect under gamma distribution.                                       
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